mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-12 12:39:01 +08:00
rm unused file (#3205)
### What problem does this PR solve? ### Type of change - [x] Refactoring
This commit is contained in:
parent
185c6a0c71
commit
677f02c2a7
@ -1,171 +0,0 @@
|
|||||||
#
|
|
||||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
#
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import pickle
|
|
||||||
import random
|
|
||||||
import time
|
|
||||||
from copy import deepcopy
|
|
||||||
from multiprocessing.connection import Listener
|
|
||||||
from threading import Thread
|
|
||||||
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
|
||||||
|
|
||||||
|
|
||||||
def torch_gc():
|
|
||||||
try:
|
|
||||||
import torch
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
# with torch.cuda.device(DEVICE):
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
torch.cuda.ipc_collect()
|
|
||||||
elif torch.backends.mps.is_available():
|
|
||||||
try:
|
|
||||||
from torch.mps import empty_cache
|
|
||||||
empty_cache()
|
|
||||||
except Exception as e:
|
|
||||||
pass
|
|
||||||
except Exception:
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
class RPCHandler:
|
|
||||||
def __init__(self):
|
|
||||||
self._functions = {}
|
|
||||||
|
|
||||||
def register_function(self, func):
|
|
||||||
self._functions[func.__name__] = func
|
|
||||||
|
|
||||||
def handle_connection(self, connection):
|
|
||||||
try:
|
|
||||||
while True:
|
|
||||||
# Receive a message
|
|
||||||
func_name, args, kwargs = pickle.loads(connection.recv())
|
|
||||||
# Run the RPC and send a response
|
|
||||||
try:
|
|
||||||
r = self._functions[func_name](*args, **kwargs)
|
|
||||||
connection.send(pickle.dumps(r))
|
|
||||||
except Exception as e:
|
|
||||||
connection.send(pickle.dumps(e))
|
|
||||||
except EOFError:
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
def rpc_server(hdlr, address, authkey):
|
|
||||||
sock = Listener(address, authkey=authkey)
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
client = sock.accept()
|
|
||||||
t = Thread(target=hdlr.handle_connection, args=(client,))
|
|
||||||
t.daemon = True
|
|
||||||
t.start()
|
|
||||||
except Exception as e:
|
|
||||||
print("【EXCEPTION】:", str(e))
|
|
||||||
|
|
||||||
|
|
||||||
models = []
|
|
||||||
tokenizer = None
|
|
||||||
|
|
||||||
|
|
||||||
def chat(messages, gen_conf):
|
|
||||||
global tokenizer
|
|
||||||
model = Model()
|
|
||||||
try:
|
|
||||||
torch_gc()
|
|
||||||
conf = {
|
|
||||||
"max_new_tokens": int(
|
|
||||||
gen_conf.get(
|
|
||||||
"max_tokens", 256)), "temperature": float(
|
|
||||||
gen_conf.get(
|
|
||||||
"temperature", 0.1))}
|
|
||||||
print(messages, conf)
|
|
||||||
text = tokenizer.apply_chat_template(
|
|
||||||
messages,
|
|
||||||
tokenize=False,
|
|
||||||
add_generation_prompt=True
|
|
||||||
)
|
|
||||||
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
|
||||||
|
|
||||||
generated_ids = model.generate(
|
|
||||||
model_inputs.input_ids,
|
|
||||||
**conf
|
|
||||||
)
|
|
||||||
generated_ids = [
|
|
||||||
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
|
||||||
]
|
|
||||||
|
|
||||||
return tokenizer.batch_decode(
|
|
||||||
generated_ids, skip_special_tokens=True)[0]
|
|
||||||
except Exception as e:
|
|
||||||
return str(e)
|
|
||||||
|
|
||||||
|
|
||||||
def chat_streamly(messages, gen_conf):
|
|
||||||
global tokenizer
|
|
||||||
model = Model()
|
|
||||||
try:
|
|
||||||
torch_gc()
|
|
||||||
conf = deepcopy(gen_conf)
|
|
||||||
print(messages, conf)
|
|
||||||
text = tokenizer.apply_chat_template(
|
|
||||||
messages,
|
|
||||||
tokenize=False,
|
|
||||||
add_generation_prompt=True
|
|
||||||
)
|
|
||||||
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
|
||||||
streamer = TextStreamer(tokenizer)
|
|
||||||
conf["inputs"] = model_inputs.input_ids
|
|
||||||
conf["streamer"] = streamer
|
|
||||||
conf["max_new_tokens"] = conf["max_tokens"]
|
|
||||||
del conf["max_tokens"]
|
|
||||||
thread = Thread(target=model.generate, kwargs=conf)
|
|
||||||
thread.start()
|
|
||||||
for _, new_text in enumerate(streamer):
|
|
||||||
yield new_text
|
|
||||||
except Exception as e:
|
|
||||||
yield "**ERROR**: " + str(e)
|
|
||||||
|
|
||||||
|
|
||||||
def Model():
|
|
||||||
global models
|
|
||||||
random.seed(time.time())
|
|
||||||
return random.choice(models)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument("--model_name", type=str, help="Model name")
|
|
||||||
parser.add_argument(
|
|
||||||
"--port",
|
|
||||||
default=7860,
|
|
||||||
type=int,
|
|
||||||
help="RPC serving port")
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
handler = RPCHandler()
|
|
||||||
handler.register_function(chat)
|
|
||||||
handler.register_function(chat_streamly)
|
|
||||||
|
|
||||||
models = []
|
|
||||||
for _ in range(1):
|
|
||||||
m = AutoModelForCausalLM.from_pretrained(args.model_name,
|
|
||||||
device_map="auto",
|
|
||||||
torch_dtype='auto')
|
|
||||||
models.append(m)
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
|
||||||
|
|
||||||
# Run the server
|
|
||||||
rpc_server(handler, ('0.0.0.0', args.port),
|
|
||||||
authkey=b'infiniflow-token4kevinhu')
|
|
Loading…
x
Reference in New Issue
Block a user