refine for English corpus (#135)

This commit is contained in:
KevinHuSh 2024-03-20 16:56:16 +08:00 committed by GitHub
parent 78727c8809
commit 6999598101
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 216 additions and 125 deletions

View File

@ -5,6 +5,27 @@ from io import BytesIO
class HuExcelParser:
def html(self, fnm):
if isinstance(fnm, str):
wb = load_workbook(fnm)
else:
wb = load_workbook(BytesIO(fnm))
tb = ""
for sheetname in wb.sheetnames:
ws = wb[sheetname]
rows = list(ws.rows)
tb += f"<table><caption>{sheetname}</caption><tr>"
for t in list(rows[0]): tb += f"<th>{t.value}</th>"
tb += "</tr>"
for r in list(rows[1:]):
tb += "<tr>"
for i,c in enumerate(r):
if c.value is None: tb += "<td></td>"
else: tb += f"<td>{c.value}</td>"
tb += "</tr>"
tb += "</table>\n"
return tb
def __call__(self, fnm):
if isinstance(fnm, str):
wb = load_workbook(fnm)

View File

@ -17,7 +17,6 @@ from rag.nlp import huqie
from copy import deepcopy
from huggingface_hub import hf_hub_download
logging.getLogger("pdfminer").setLevel(logging.WARNING)
@ -25,7 +24,7 @@ class HuParser:
def __init__(self):
self.ocr = OCR()
if hasattr(self, "model_speciess"):
self.layouter = LayoutRecognizer("layout."+self.model_speciess)
self.layouter = LayoutRecognizer("layout." + self.model_speciess)
else:
self.layouter = LayoutRecognizer("layout")
self.tbl_det = TableStructureRecognizer()
@ -141,7 +140,7 @@ class HuParser:
for j in range(i, -1, -1):
# restore the order using th
if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threashold \
and arr[j + 1]["top"] < arr[j]["top"]\
and arr[j + 1]["top"] < arr[j]["top"] \
and arr[j + 1]["page_number"] == arr[j]["page_number"]:
tmp = arr[j]
arr[j] = arr[j + 1]
@ -278,8 +277,10 @@ class HuParser:
for b in bxs:
if not b["text"]:
left, right, top, bott = b["x0"]*ZM, b["x1"]*ZM, b["top"]*ZM, b["bottom"]*ZM
b["text"] = self.ocr.recognize(np.array(img), np.array([[left, top], [right, top], [right, bott], [left, bott]], dtype=np.float32))
left, right, top, bott = b["x0"] * ZM, b["x1"] * ZM, b["top"] * ZM, b["bottom"] * ZM
b["text"] = self.ocr.recognize(np.array(img),
np.array([[left, top], [right, top], [right, bott], [left, bott]],
dtype=np.float32))
del b["txt"]
bxs = [b for b in bxs if b["text"]]
if self.mean_height[-1] == 0:
@ -315,7 +316,8 @@ class HuParser:
while i < len(bxs) - 1:
b = bxs[i]
b_ = bxs[i + 1]
if b.get("layoutno", "0") != b_.get("layoutno", "1") or b.get("layout_type", "") in ["table", "figure", "equation"]:
if b.get("layoutno", "0") != b_.get("layoutno", "1") or b.get("layout_type", "") in ["table", "figure",
"equation"]:
i += 1
continue
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 3:
@ -376,9 +378,13 @@ class HuParser:
b["page_number"] == b_["page_number"] and b_["top"] - \
b["bottom"] > self.mean_height[b["page_number"] - 1] * 1.5,
b["page_number"] < b_["page_number"] and abs(
b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4
b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4,
]
if any(feats) and not any(concatting_feats):
# split features
detach_feats = [b["x1"] < b_["x0"],
b["x0"] > b_["x1"]]
if (any(feats) and not any(concatting_feats)) or any(detach_feats):
print(b["text"], b_["text"], any(feats), any(concatting_feats), any(detach_feats))
i += 1
continue
# merge up and down
@ -503,18 +509,21 @@ class HuParser:
findit = False
i = 0
while i < len(self.boxes):
if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$", re.sub(r"( | |\u3000)+", "", self.boxes[i]["text"].lower())):
if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$",
re.sub(r"( | |\u3000)+", "", self.boxes[i]["text"].lower())):
i += 1
continue
findit = True
eng = re.match(r"[0-9a-zA-Z :'.-]{5,}", self.boxes[i]["text"].strip())
self.boxes.pop(i)
if i >= len(self.boxes): break
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(self.boxes[i]["text"].strip().split(" ")[:2])
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(
self.boxes[i]["text"].strip().split(" ")[:2])
while not prefix:
self.boxes.pop(i)
if i >= len(self.boxes): break
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(self.boxes[i]["text"].strip().split(" ")[:2])
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(
self.boxes[i]["text"].strip().split(" ")[:2])
self.boxes.pop(i)
if i >= len(self.boxes) or not prefix: break
for j in range(i, min(i + 128, len(self.boxes))):
@ -522,13 +531,13 @@ class HuParser:
continue
for k in range(i, j): self.boxes.pop(i)
break
if findit:return
if findit: return
page_dirty = [0] * len(self.page_images)
for b in self.boxes:
if re.search(r"(··|··|··)", b["text"]):
page_dirty[b["page_number"]-1] += 1
page_dirty = set([i+1 for i, t in enumerate(page_dirty) if t > 3])
page_dirty[b["page_number"] - 1] += 1
page_dirty = set([i + 1 for i, t in enumerate(page_dirty) if t > 3])
if not page_dirty: return
i = 0
while i < len(self.boxes):
@ -546,7 +555,7 @@ class HuParser:
self.boxes.pop(i)
continue
if not b_["text"].strip():
self.boxes.pop(i+1)
self.boxes.pop(i + 1)
continue
if b["text"].strip()[0] != b_["text"].strip()[0] \
@ -574,8 +583,10 @@ class HuParser:
continue
lout_no = str(self.boxes[i]["page_number"]) + \
"-" + str(self.boxes[i]["layoutno"])
if TableStructureRecognizer.is_caption(self.boxes[i]) or self.boxes[i]["layout_type"] in ["table caption", "title",
"figure caption", "reference"]:
if TableStructureRecognizer.is_caption(self.boxes[i]) or self.boxes[i]["layout_type"] in ["table caption",
"title",
"figure caption",
"reference"]:
nomerge_lout_no.append(lst_lout_no)
if self.boxes[i]["layout_type"] == "table":
if re.match(r"(数据|资料|图表)*来源[: ]", self.boxes[i]["text"]):
@ -654,7 +665,7 @@ class HuParser:
tk, tv = nearest(tables)
fk, fv = nearest(figures)
#if min(tv, fv) > 2000:
# if min(tv, fv) > 2000:
# i += 1
# continue
if tv < fv and tk:
@ -699,7 +710,7 @@ class HuParser:
"layoutno", "")))
left, top, right, bott = b["x0"], b["top"], b["x1"], b["bottom"]
poss.append((pn+self.page_from, left, right, top, bott))
poss.append((pn + self.page_from, left, right, top, bott))
return self.page_images[pn] \
.crop((left * ZM, top * ZM,
right * ZM, bott * ZM))
@ -738,7 +749,7 @@ class HuParser:
for k, bxs in tables.items():
if not bxs:
continue
bxs = Recognizer.sort_Y_firstly(bxs, np.mean([(b["bottom"]-b["top"])/2 for b in bxs]))
bxs = Recognizer.sort_Y_firstly(bxs, np.mean([(b["bottom"] - b["top"]) / 2 for b in bxs]))
poss = []
res.append((cropout(bxs, "table", poss),
self.tbl_det.construct_table(bxs, html=return_html, is_english=self.is_english)))
@ -879,7 +890,8 @@ class HuParser:
self.pdf = pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm))
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
enumerate(self.pdf.pages[page_from:page_to])]
self.page_chars = [[c for c in page.chars if self._has_color(c)] for page in self.pdf.pages[page_from:page_to]]
self.page_chars = [[c for c in page.chars if self._has_color(c)] for page in
self.pdf.pages[page_from:page_to]]
self.total_page = len(self.pdf.pages)
except Exception as e:
self.pdf = fitz.open(fnm) if isinstance(fnm, str) else fitz.open(stream=fnm, filetype="pdf")
@ -888,8 +900,8 @@ class HuParser:
mat = fitz.Matrix(zoomin, zoomin)
self.total_page = len(self.pdf)
for i, page in enumerate(self.pdf):
if i < page_from:continue
if i >= page_to:break
if i < page_from: continue
if i >= page_to: break
pix = page.get_pixmap(matrix=mat)
img = Image.frombytes("RGB", [pix.width, pix.height],
pix.samples)
@ -897,7 +909,9 @@ class HuParser:
self.page_chars.append([])
logging.info("Images converted.")
self.is_english = [re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i]))))) for i in range(len(self.page_chars))]
self.is_english = [re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(
random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i]))))) for i in
range(len(self.page_chars))]
if sum([1 if e else 0 for e in self.is_english]) > len(self.page_images) / 2:
self.is_english = True
else:
@ -927,11 +941,12 @@ class HuParser:
# self.page_cum_height.append(
# np.max([c["bottom"] for c in chars]))
self.__ocr(i + 1, img, chars, zoomin)
if callback: callback(prog=(i+1)*0.6/len(self.page_images), msg="")
if callback: callback(prog=(i + 1) * 0.6 / len(self.page_images), msg="")
if not self.is_english and not any([c for c in self.page_chars]) and self.boxes:
bxes = [b for bxs in self.boxes for b in bxs]
self.is_english = re.search(r"[\na-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join([b["text"] for b in random.choices(bxes, k=min(30, len(bxes)))]))
self.is_english = re.search(r"[\na-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}",
"".join([b["text"] for b in random.choices(bxes, k=min(30, len(bxes)))]))
logging.info("Is it English:", self.is_english)
@ -964,12 +979,13 @@ class HuParser:
if need_position: return None, None
return
max_width = np.max([right-left for (_, left, right, _, _) in poss])
max_width = np.max([right - left for (_, left, right, _, _) in poss])
GAP = 6
pos = poss[0]
poss.insert(0, ([pos[0][0]], pos[1], pos[2], max(0, pos[3]-120), max(pos[3]-GAP, 0)))
poss.insert(0, ([pos[0][0]], pos[1], pos[2], max(0, pos[3] - 120), max(pos[3] - GAP, 0)))
pos = poss[-1]
poss.append(([pos[0][-1]], pos[1], pos[2], min(self.page_images[pos[0][-1]].size[1]/ZM, pos[4]+GAP), min(self.page_images[pos[0][-1]].size[1]/ZM, pos[4]+120)))
poss.append(([pos[0][-1]], pos[1], pos[2], min(self.page_images[pos[0][-1]].size[1] / ZM, pos[4] + GAP),
min(self.page_images[pos[0][-1]].size[1] / ZM, pos[4] + 120)))
positions = []
for ii, (pns, left, right, top, bottom) in enumerate(poss):
@ -984,9 +1000,9 @@ class HuParser:
bottom, self.page_images[pns[0]].size[1])
))
)
if 0 < ii < len(poss)-1:
positions.append((pns[0]+self.page_from, left, right, top, min(
bottom, self.page_images[pns[0]].size[1])/ZM))
if 0 < ii < len(poss) - 1:
positions.append((pns[0] + self.page_from, left, right, top, min(
bottom, self.page_images[pns[0]].size[1]) / ZM))
bottom -= self.page_images[pns[0]].size[1]
for pn in pns[1:]:
imgs.append(
@ -997,7 +1013,7 @@ class HuParser:
))
)
if 0 < ii < len(poss) - 1:
positions.append((pn+self.page_from, left, right, 0, min(
positions.append((pn + self.page_from, left, right, 0, min(
bottom, self.page_images[pn].size[1]) / ZM))
bottom -= self.page_images[pn].size[1]
@ -1026,6 +1042,19 @@ class HuParser:
return pic, positions
return pic
def get_position(self, bx, ZM):
poss = []
pn = bx["page_number"]
top = bx["top"] - self.page_cum_height[pn - 1]
bott = bx["bottom"] - self.page_cum_height[pn - 1]
poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn - 1].size[1] / ZM)))
while bott * ZM > self.page_images[pn - 1].size[1]:
bott -= self.page_images[pn - 1].size[1] / ZM
top = 0
pn += 1
poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn - 1].size[1] / ZM)))
return poss
if __name__ == "__main__":
pass

View File

@ -30,19 +30,6 @@ class Pdf(PdfParser):
# print(b)
print("OCR:", timer()-start)
def get_position(bx):
poss = []
pn = bx["page_number"]
top = bx["top"] - self.page_cum_height[pn - 1]
bott = bx["bottom"] - self.page_cum_height[pn - 1]
poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn-1].size[1]/zoomin)))
while bott * zoomin > self.page_images[pn - 1].size[1]:
bott -= self.page_images[pn- 1].size[1] / zoomin
top = 0
pn += 1
poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn - 1].size[1] / zoomin)))
return poss
def tag(pn, left, right, top, bottom):
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
.format(pn, left, right, top, bottom)
@ -54,7 +41,7 @@ class Pdf(PdfParser):
callback(0.67, "Table analysis finished.")
self._text_merge()
tbls = self._extract_table_figure(True, zoomin, True, True)
self._naive_vertical_merge()
self._concat_downward()
self._filter_forpages()
callback(0.68, "Text merging finished")
@ -74,7 +61,7 @@ class Pdf(PdfParser):
sec_ids.append(sid)
#print(lvl, self.boxes[i]["text"], most_level)
sections = [(b["text"], sec_ids[i], get_position(b)) for i, b in enumerate(self.boxes)]
sections = [(b["text"], sec_ids[i], self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)]
for (img, rows), poss in tbls:
sections.append((rows if isinstance(rows, str) else rows[0], -1, [(p[0]+1-from_page, p[1], p[2], p[3], p[4]) for p in poss]))

View File

@ -14,7 +14,7 @@ import copy
import re
from rag.app import laws
from rag.nlp import huqie, is_english, tokenize, naive_merge, tokenize_table, add_positions
from deepdoc.parser import PdfParser
from deepdoc.parser import PdfParser, ExcelParser
from rag.settings import cron_logger
@ -74,6 +74,10 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
sections, tbls = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
res = tokenize_table(tbls, doc, eng)
elif re.search(r"\.xlsx?$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
excel_parser = ExcelParser()
sections = [(excel_parser.html(binary), "")]
elif re.search(r"\.txt$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = ""

View File

@ -15,7 +15,7 @@ import re
from collections import Counter
from api.db import ParserType
from rag.nlp import huqie, tokenize, tokenize_table, add_positions
from rag.nlp import huqie, tokenize, tokenize_table, add_positions, bullets_category, title_frequency
from deepdoc.parser import PdfParser
import numpy as np
from rag.utils import num_tokens_from_string
@ -46,11 +46,11 @@ class Pdf(PdfParser):
self._table_transformer_job(zoomin)
callback(0.68, "Table analysis finished")
self._text_merge()
tbls = self._extract_table_figure(True, zoomin, True, True)
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
self._concat_downward(concat_between_pages=False)
self._concat_downward()
self._filter_forpages()
callback(0.75, "Text merging finished.")
tbls = self._extract_table_figure(True, zoomin, True, True)
# clean mess
if column_width < self.page_images[0].size[0] / zoomin / 2:
@ -59,24 +59,24 @@ class Pdf(PdfParser):
self.boxes = self.sort_X_by_page(self.boxes, column_width / 2)
for b in self.boxes:
b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())
freq = Counter([b["text"] for b in self.boxes])
garbage = set([k for k, v in freq.items() if v > self.total_page * 0.6])
i = 0
while i < len(self.boxes):
if self.boxes[i]["text"] in garbage \
or (re.match(r"[a-zA-Z0-9]+$", self.boxes[i]["text"]) and not self.boxes[i].get("layoutno")) \
or (i + 1 < len(self.boxes) and self.boxes[i]["text"] == self.boxes[i + 1]["text"]):
self.boxes.pop(i)
elif i + 1 < len(self.boxes) and self.boxes[i].get("layoutno", '0') == self.boxes[i + 1].get("layoutno",
'1'):
# merge within same layouts
self.boxes[i + 1]["top"] = self.boxes[i]["top"]
self.boxes[i + 1]["x0"] = min(self.boxes[i]["x0"], self.boxes[i + 1]["x0"])
self.boxes[i + 1]["x1"] = max(self.boxes[i]["x1"], self.boxes[i + 1]["x1"])
self.boxes[i + 1]["text"] = self.boxes[i]["text"] + " " + self.boxes[i + 1]["text"]
self.boxes.pop(i)
else:
i += 1
# freq = Counter([b["text"] for b in self.boxes])
# garbage = set([k for k, v in freq.items() if v > self.total_page * 0.6])
# i = 0
# while i < len(self.boxes):
# if self.boxes[i]["text"] in garbage \
# or (re.match(r"[a-zA-Z0-9]+$", self.boxes[i]["text"]) and not self.boxes[i].get("layoutno")) \
# or (i + 1 < len(self.boxes) and self.boxes[i]["text"] == self.boxes[i + 1]["text"]):
# self.boxes.pop(i)
# elif i + 1 < len(self.boxes) and self.boxes[i].get("layoutno", '0') == self.boxes[i + 1].get("layoutno",
# '1'):
# # merge within same layouts
# self.boxes[i + 1]["top"] = self.boxes[i]["top"]
# self.boxes[i + 1]["x0"] = min(self.boxes[i]["x0"], self.boxes[i + 1]["x0"])
# self.boxes[i + 1]["x1"] = max(self.boxes[i]["x1"], self.boxes[i + 1]["x1"])
# self.boxes[i + 1]["text"] = self.boxes[i]["text"] + " " + self.boxes[i + 1]["text"]
# self.boxes.pop(i)
# else:
# i += 1
def _begin(txt):
return re.match(
@ -88,7 +88,7 @@ class Pdf(PdfParser):
"title":"",
"authors": "",
"abstract": "",
"lines": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes[i:] if
"sections": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes if
re.match(r"(text|title)", b.get("layoutno", "text"))],
"tables": tbls
}
@ -119,11 +119,10 @@ class Pdf(PdfParser):
if re.match("(abstract|摘要)", txt):
if len(txt.split(" ")) > 32 or len(txt) > 64:
abstr = txt + self._line_tag(b, zoomin)
i += 1
break
txt = self.boxes[i + 1]["text"].lower().strip()
txt = self.boxes[i]["text"].lower().strip()
if len(txt.split(" ")) > 32 or len(txt) > 64:
abstr = txt + self._line_tag(self.boxes[i + 1], zoomin)
abstr = txt + self._line_tag(self.boxes[i], zoomin)
i += 1
break
if not abstr: i = 0
@ -136,7 +135,7 @@ class Pdf(PdfParser):
"title": title if title else filename,
"authors": " ".join(authors),
"abstract": abstr,
"lines": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes[i:] if
"sections": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes[i:] if
re.match(r"(text|title)", b.get("layoutno", "text"))],
"tables": tbls
}
@ -153,7 +152,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
paper = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
else: raise NotImplementedError("file type not supported yet(pdf supported)")
doc = {"docnm_kwd": filename, "authors_tks": paper["authors"],
doc = {"docnm_kwd": filename, "authors_tks": huqie.qie(paper["authors"]),
"title_tks": huqie.qie(paper["title"] if paper["title"] else filename)}
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
doc["authors_sm_tks"] = huqie.qieqie(doc["authors_tks"])
@ -173,6 +173,38 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
tokenize(d, txt, eng)
res.append(d)
sorted_sections = paper["sections"]
# set pivot using the most frequent type of title,
# then merge between 2 pivot
bull = bullets_category([txt for txt, _ in sorted_sections])
most_level, levels = title_frequency(bull, sorted_sections)
assert len(sorted_sections) == len(levels)
sec_ids = []
sid = 0
for i, lvl in enumerate(levels):
if lvl <= most_level and i > 0 and lvl != levels[i-1]: sid += 1
sec_ids.append(sid)
print(lvl, sorted_sections[i][0], most_level, sid)
chunks = []
last_sid = -2
for (txt, _), sec_id in zip(sorted_sections, sec_ids):
if sec_id == last_sid:
if chunks:
chunks[-1] += "\n" + txt
continue
chunks.append(txt)
last_sid = sec_id
for txt in chunks:
d = copy.deepcopy(doc)
d["image"], poss = pdf_parser.crop(txt, need_position=True)
add_positions(d, poss)
tokenize(d, pdf_parser.remove_tag(txt), eng)
res.append(d)
print("----------------------\n", pdf_parser.remove_tag(txt))
return res
readed = [0] * len(paper["lines"])
# find colon firstly
i = 0
@ -252,6 +284,6 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
if __name__ == "__main__":
import sys
def dummy(a, b):
def dummy(prog=None, msg=""):
pass
chunk(sys.argv[1], callback=dummy)

View File

@ -16,7 +16,7 @@ from io import BytesIO
from nltk import word_tokenize
from openpyxl import load_workbook
from rag.nlp import is_english, random_choices
from rag.nlp import huqie, stemmer
from rag.nlp import huqie
from deepdoc.parser import ExcelParser
@ -73,12 +73,8 @@ def beAdoc(d, q, a, eng):
aprefix = "Answer: " if eng else "回答:"
d["content_with_weight"] = "\t".join(
[qprefix + rmPrefix(q), aprefix + rmPrefix(a)])
if eng:
d["content_ltks"] = " ".join([stemmer.stem(w)
for w in word_tokenize(q)])
else:
d["content_ltks"] = huqie.qie(q)
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
d["content_ltks"] = huqie.qie(q)
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
return d

View File

@ -74,9 +74,9 @@ def trans_datatime(s):
def trans_bool(s):
if re.match(r"(true|yes|是|\*|✓|✔|☑|✅|√)$", str(s).strip(), flags=re.IGNORECASE):
return ["yes", ""]
return "yes"
if re.match(r"(false|no|否|⍻|×)$", str(s).strip(), flags=re.IGNORECASE):
return ["no", ""]
return "no"
def column_data_type(arr):
@ -92,7 +92,7 @@ def column_data_type(arr):
counts["int"] += 1
elif re.match(r"[+-]?[0-9.]+$", str(a).replace("%%", "")):
counts["float"] += 1
elif re.match(r"(true|false|yes|no|是|否)$", str(a), flags=re.IGNORECASE):
elif re.match(r"(true|yes|是|\*|✓|✔|☑|✅|√|false|no|否|⍻|×)$", str(a), flags=re.IGNORECASE):
counts["bool"] += 1
elif trans_datatime(str(a)):
counts["datetime"] += 1

View File

@ -3,14 +3,9 @@ from collections import Counter
from rag.utils import num_tokens_from_string
from . import huqie
from nltk import word_tokenize
import re
import copy
from nltk.stem import PorterStemmer
stemmer = PorterStemmer()
BULLET_PATTERN = [[
r"第[零一二三四五六七八九十百0-9]+(分?编|部分)",
@ -77,13 +72,8 @@ def is_english(texts):
def tokenize(d, t, eng):
d["content_with_weight"] = t
t = re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", t)
if eng:
t = re.sub(r"([a-z])-([a-z])", r"\1\2", t)
d["content_ltks"] = " ".join([stemmer.stem(w)
for w in word_tokenize(t)])
else:
d["content_ltks"] = huqie.qie(t)
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
d["content_ltks"] = huqie.qie(t)
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
def tokenize_table(tbls, doc, eng, batch_size=10):
@ -94,8 +84,7 @@ def tokenize_table(tbls, doc, eng, batch_size=10):
continue
if isinstance(rows, str):
d = copy.deepcopy(doc)
r = re.sub(r"<[^<>]{,12}>", "", rows)
tokenize(d, r, eng)
tokenize(d, rows, eng)
d["content_with_weight"] = rows
d["image"] = img
add_positions(d, poss)

View File

@ -8,7 +8,8 @@ import re
import string
import sys
from hanziconv import HanziConv
from nltk import word_tokenize
from nltk.stem import PorterStemmer, WordNetLemmatizer
from api.utils.file_utils import get_project_base_directory
@ -45,6 +46,9 @@ class Huqie:
self.trie_ = datrie.Trie(string.printable)
self.DIR_ = os.path.join(get_project_base_directory(), "rag/res", "huqie")
self.stemmer = PorterStemmer()
self.lemmatizer = WordNetLemmatizer()
self.SPLIT_CHAR = r"([ ,\.<>/?;'\[\]\\`!@#$%^&*\(\)\{\}\|_+=《》,。?、;‘’:“”【】~!¥%……()——-]+|[a-z\.-]+|[0-9,\.-]+)"
try:
self.trie_ = datrie.Trie.load(self.DIR_ + ".txt.trie")
@ -239,6 +243,10 @@ class Huqie:
def qie(self, line):
line = self._strQ2B(line).lower()
line = self._tradi2simp(line)
zh_num = len([1 for c in line if is_chinese(c)])
if zh_num < len(line) * 0.2:
return " ".join([self.stemmer.stem(self.lemmatizer.lemmatize(t)) for t in word_tokenize(line)])
arr = re.split(self.SPLIT_CHAR, line)
res = []
for L in arr:
@ -290,8 +298,12 @@ class Huqie:
return self.merge_(res)
def qieqie(self, tks):
tks = tks.split(" ")
zh_num = len([1 for c in tks if c and is_chinese(c[0])])
if zh_num < len(tks) * 0.2:return " ".join(tks)
res = []
for tk in tks.split(" "):
for tk in tks:
if len(tk) < 3 or re.match(r"[0-9,\.-]+$", tk):
res.append(tk)
continue

View File

@ -4,8 +4,8 @@ import json
import re
import logging
import copy
import math
from elasticsearch_dsl import Q, Search
from elasticsearch_dsl import Q
from rag.nlp import huqie, term_weight, synonym
@ -33,12 +33,14 @@ class EsQueryer:
@staticmethod
def rmWWW(txt):
txt = re.sub(
r"是*(什么样的|哪家|那家|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀)是*",
"",
txt)
return re.sub(
r"(what|who|how|which|where|why|(is|are|were|was) there) (is|are|were|was|to)*", "", txt, re.IGNORECASE)
patts = [
(r"是*(什么样的|哪家|那家|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀)是*", ""),
(r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "),
(r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down)", " ")
]
for r, p in patts:
txt = re.sub(r, p, txt, flags=re.IGNORECASE)
return txt
def question(self, txt, tbl="qa", min_match="60%"):
txt = re.sub(
@ -50,7 +52,7 @@ class EsQueryer:
txt = EsQueryer.rmWWW(txt)
if not self.isChinese(txt):
tks = [t for t in txt.split(" ") if t.strip()]
tks = huqie.qie(txt).split(" ")
q = tks
for i in range(1, len(tks)):
q.append("\"%s %s\"^2" % (tks[i - 1], tks[i]))
@ -58,9 +60,9 @@ class EsQueryer:
q.append(txt)
return Q("bool",
must=Q("query_string", fields=self.flds,
type="best_fields", query=" OR ".join(q),
type="best_fields", query=" ".join(q),
boost=1, minimum_should_match=min_match)
), txt.split(" ")
), tks
def needQieqie(tk):
if len(tk) < 4:
@ -160,8 +162,8 @@ class EsQueryer:
s += v# * dtwt[k]
q = 1e-9
for k, v in qtwt.items():
q += v * v
d = 1e-9
for k, v in dtwt.items():
d += v * v
return s / q#math.sqrt(q) / math.sqrt(d)
q += v #* v
#d = 1e-9
#for k, v in dtwt.items():
# d += v * v
return s / q #math.sqrt(q) / math.sqrt(d)

View File

@ -196,7 +196,24 @@ class Dealer:
def insert_citations(self, answer, chunks, chunk_v,
embd_mdl, tkweight=0.7, vtweight=0.3):
assert len(chunks) == len(chunk_v)
pieces = re.split(r"([;。?!\n]|[a-z][.?;!][ \n])", answer)
pieces = re.split(r"(```)", answer)
if len(pieces) >= 3:
i = 0
pieces_ = []
while i < len(pieces):
if pieces[i] == "```":
st = i
i += 1
while i<len(pieces) and pieces[i] != "```":
i += 1
if i < len(pieces): i += 1
pieces_.append("".join(pieces[st: i])+"\n")
else:
pieces_.extend(re.split(r"([^\|][;。?!\n]|[a-z][.?;!][ \n])", pieces[i]))
i += 1
pieces = pieces_
else:
pieces = re.split(r"([^\|][;。?!\n]|[a-z][.?;!][ \n])", answer)
for i in range(1, len(pieces)):
if re.match(r"[a-z][.?;!][ \n]", pieces[i]):
pieces[i - 1] += pieces[i][0]
@ -226,7 +243,7 @@ class Dealer:
chunks_tks,
tkweight, vtweight)
mx = np.max(sim) * 0.99
if mx < 0.66:
if mx < 0.7:
continue
cites[idx[i]] = list(
set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
@ -249,6 +266,7 @@ class Dealer:
def rerank(self, sres, query, tkweight=0.3,
vtweight=0.7, cfield="content_ltks"):
_, keywords = self.qryr.question(query)
ins_embd = [
Dealer.trans2floats(
sres.field[i].get("q_%d_vec" % len(sres.query_vector), "\t".join(["0"] * len(sres.query_vector)))) for i in sres.ids]
@ -258,8 +276,7 @@ class Dealer:
for i in sres.ids]
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
ins_embd,
huqie.qie(
query).split(" "),
keywords,
ins_tw, tkweight, vtweight)
return sim, tksim, vtsim

View File

@ -82,12 +82,14 @@ def dispatch():
tsks = []
if r["type"] == FileType.PDF.value:
pages = PdfParser.total_page_number(r["name"], MINIO.get(r["kb_id"], r["location"]))
page_size = 5
if r["parser_id"] == "paper": page_size = 12
for s,e in r["parser_config"].get("pages", [(0,100000)]):
e = min(e, pages)
for p in range(s, e, 5):
for p in range(s, e, page_size):
task = new_task()
task["from_page"] = p
task["to_page"] = min(p + 5, e)
task["to_page"] = min(p + page_size, e)
tsks.append(task)
elif r["parser_id"] == "table":
rn = HuExcelParser.row_number(r["name"], MINIO.get(r["kb_id"], r["location"]))