mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-13 09:29:02 +08:00
refine page ranges (#147)
This commit is contained in:
parent
1d9a50b090
commit
71fe314955
@ -477,7 +477,7 @@ class Knowledgebase(DataBaseModel):
|
||||
vector_similarity_weight = FloatField(default=0.3)
|
||||
|
||||
parser_id = CharField(max_length=32, null=False, help_text="default parser ID", default=ParserType.NAIVE.value)
|
||||
parser_config = JSONField(null=False, default={"pages":[[0,1000000]]})
|
||||
parser_config = JSONField(null=False, default={"pages":[[1,1000000]]})
|
||||
status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted,1: validate)", default="1")
|
||||
|
||||
def __str__(self):
|
||||
@ -492,7 +492,7 @@ class Document(DataBaseModel):
|
||||
thumbnail = TextField(null=True, help_text="thumbnail base64 string")
|
||||
kb_id = CharField(max_length=256, null=False, index=True)
|
||||
parser_id = CharField(max_length=32, null=False, help_text="default parser ID")
|
||||
parser_config = JSONField(null=False, default={"pages":[[0,1000000]]})
|
||||
parser_config = JSONField(null=False, default={"pages":[[1,1000000]]})
|
||||
source_type = CharField(max_length=128, null=False, default="local", help_text="where dose this document from")
|
||||
type = CharField(max_length=32, null=False, help_text="file extension")
|
||||
created_by = CharField(max_length=32, null=False, help_text="who created it")
|
||||
|
@ -1074,15 +1074,15 @@ class HuParser:
|
||||
|
||||
|
||||
class PlainParser(object):
|
||||
def __call__(self, filename, **kwargs):
|
||||
def __call__(self, filename, from_page=0, to_page=100000, **kwargs):
|
||||
self.outlines = []
|
||||
lines = []
|
||||
try:
|
||||
self.pdf = pdf2_read(filename if isinstance(filename, str) else BytesIO(filename))
|
||||
outlines = self.pdf.outline
|
||||
for page in self.pdf.pages:
|
||||
for page in self.pdf.pages[from_page:to_page]:
|
||||
lines.extend([t for t in page.extract_text().split("\n")])
|
||||
|
||||
outlines = self.pdf.outline
|
||||
def dfs(arr, depth):
|
||||
for a in arr:
|
||||
if isinstance(a, dict):
|
||||
|
@ -15,6 +15,7 @@ import re
|
||||
from collections import Counter
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
from api.db import ParserType
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
@ -36,7 +37,8 @@ class LayoutRecognizer(Recognizer):
|
||||
"Equation",
|
||||
]
|
||||
def __init__(self, domain):
|
||||
super().__init__(self.labels, domain, os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
||||
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
|
||||
super().__init__(self.labels, domain, model_dir)#os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
||||
self.garbage_layouts = ["footer", "header", "reference"]
|
||||
|
||||
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16, drop=True):
|
||||
|
@ -30,8 +30,6 @@ class Pdf(PdfParser):
|
||||
# print(b)
|
||||
print("OCR:", timer()-start)
|
||||
|
||||
|
||||
|
||||
self._layouts_rec(zoomin)
|
||||
callback(0.65, "Layout analysis finished.")
|
||||
print("paddle layouts:", timer() - start)
|
||||
@ -47,53 +45,8 @@ class Pdf(PdfParser):
|
||||
for b in self.boxes:
|
||||
b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip())
|
||||
|
||||
return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)]
|
||||
return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)], tbls
|
||||
|
||||
# set pivot using the most frequent type of title,
|
||||
# then merge between 2 pivot
|
||||
if len(self.boxes)>0 and len(self.outlines)/len(self.boxes) > 0.1:
|
||||
max_lvl = max([lvl for _, lvl in self.outlines])
|
||||
most_level = max(0, max_lvl-1)
|
||||
levels = []
|
||||
for b in self.boxes:
|
||||
for t,lvl in self.outlines:
|
||||
tks = set([t[i]+t[i+1] for i in range(len(t)-1)])
|
||||
tks_ = set([b["text"][i]+b["text"][i+1] for i in range(min(len(t), len(b["text"])-1))])
|
||||
if len(set(tks & tks_))/max([len(tks), len(tks_), 1]) > 0.8:
|
||||
levels.append(lvl)
|
||||
break
|
||||
else:
|
||||
levels.append(max_lvl + 1)
|
||||
else:
|
||||
bull = bullets_category([b["text"] for b in self.boxes])
|
||||
most_level, levels = title_frequency(bull, [(b["text"], b.get("layout_no","")) for b in self.boxes])
|
||||
|
||||
assert len(self.boxes) == len(levels)
|
||||
sec_ids = []
|
||||
sid = 0
|
||||
for i, lvl in enumerate(levels):
|
||||
if lvl <= most_level and i > 0 and lvl != levels[i-1]: sid += 1
|
||||
sec_ids.append(sid)
|
||||
#print(lvl, self.boxes[i]["text"], most_level, sid)
|
||||
|
||||
sections = [(b["text"], sec_ids[i], self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)]
|
||||
for (img, rows), poss in tbls:
|
||||
sections.append((rows if isinstance(rows, str) else rows[0], -1, [(p[0]+1-from_page, p[1], p[2], p[3], p[4]) for p in poss]))
|
||||
|
||||
chunks = []
|
||||
last_sid = -2
|
||||
tk_cnt = 0
|
||||
for txt, sec_id, poss in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1])):
|
||||
poss = "\t".join([tag(*pos) for pos in poss])
|
||||
if tk_cnt < 2048 and (sec_id == last_sid or sec_id == -1):
|
||||
if chunks:
|
||||
chunks[-1] += "\n" + txt + poss
|
||||
tk_cnt += num_tokens_from_string(txt)
|
||||
continue
|
||||
chunks.append(txt + poss)
|
||||
tk_cnt = num_tokens_from_string(txt)
|
||||
if sec_id >-1: last_sid = sec_id
|
||||
return chunks, tbls
|
||||
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
||||
@ -106,7 +59,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
||||
pdf_parser = Pdf() if kwargs.get("parser_config",{}).get("layout_recognize", True) else PlainParser()
|
||||
sections, tbls = pdf_parser(filename if not binary else binary,
|
||||
from_page=from_page, to_page=to_page, callback=callback)
|
||||
if sections and len(sections[0])<3: cks = [(t, l, [0]*5) for t, l in sections]
|
||||
if sections and len(sections[0])<3: sections = [(t, l, [[0]*5]) for t, l in sections]
|
||||
|
||||
else: raise NotImplementedError("file type not supported yet(pdf supported)")
|
||||
doc = {
|
||||
"docnm_kwd": filename
|
||||
@ -131,6 +85,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
||||
break
|
||||
else:
|
||||
levels.append(max_lvl + 1)
|
||||
|
||||
else:
|
||||
bull = bullets_category([txt for txt,_,_ in sections])
|
||||
most_level, levels = title_frequency(bull, [(txt, l) for txt, l, poss in sections])
|
||||
|
@ -45,7 +45,7 @@ class Pdf(PdfParser):
|
||||
for (img, rows), poss in tbls:
|
||||
sections.append((rows if isinstance(rows, str) else rows[0],
|
||||
[(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
|
||||
return [(txt, "") for txt, _ in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1]))]
|
||||
return [(txt, "") for txt, _ in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1]))], None
|
||||
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
||||
@ -56,7 +56,6 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
||||
|
||||
eng = lang.lower() == "english"#is_english(cks)
|
||||
|
||||
sections = []
|
||||
if re.search(r"\.docx?$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
sections = [txt for txt in laws.Docx()(filename, binary) if txt]
|
||||
@ -64,7 +63,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
||||
|
||||
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||||
pdf_parser = Pdf() if kwargs.get("parser_config",{}).get("layout_recognize", True) else PlainParser()
|
||||
sections = pdf_parser(filename if not binary else binary, to_page=to_page, callback=callback)
|
||||
sections, _ = pdf_parser(filename if not binary else binary, to_page=to_page, callback=callback)
|
||||
sections = [s for s, _ in sections if s]
|
||||
|
||||
elif re.search(r"\.xlsx?$", filename, re.IGNORECASE):
|
||||
|
@ -136,7 +136,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
||||
"title": filename,
|
||||
"authors": " ",
|
||||
"abstract": "",
|
||||
"sections": pdf_parser(filename if not binary else binary),
|
||||
"sections": pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page),
|
||||
"tables": []
|
||||
}
|
||||
else:
|
||||
|
@ -65,10 +65,10 @@ class Pdf(PdfParser):
|
||||
|
||||
|
||||
class PlainPdf(PlainParser):
|
||||
def __call__(self, filename, binary=None, callback=None, **kwargs):
|
||||
def __call__(self, filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs):
|
||||
self.pdf = pdf2_read(filename if not binary else BytesIO(filename))
|
||||
page_txt = []
|
||||
for page in self.pdf.pages:
|
||||
for page in self.pdf.pages[from_page: to_page]:
|
||||
page_txt.append(page.extract_text())
|
||||
callback(0.9, "Parsing finished")
|
||||
return [(txt, None) for txt in page_txt]
|
||||
|
@ -16,8 +16,8 @@ BULLET_PATTERN = [[
|
||||
], [
|
||||
r"第[0-9]+章",
|
||||
r"第[0-9]+节",
|
||||
r"[0-9]{,3}[\. 、]",
|
||||
r"[0-9]{,2}\.[0-9]{,2}",
|
||||
r"[0-9]{,2}[\. 、]",
|
||||
r"[0-9]{,2}\.[0-9]{,2}[^a-zA-Z/%~-]",
|
||||
r"[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}",
|
||||
r"[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}",
|
||||
], [
|
||||
@ -40,13 +40,20 @@ def random_choices(arr, k):
|
||||
return random.choices(arr, k=k)
|
||||
|
||||
|
||||
def not_bullet(line):
|
||||
patt = [
|
||||
r"0", r"[0-9]+ +[0-9~个只-]", r"[0-9]+\.{2,}"
|
||||
]
|
||||
return any([re.match(r, line) for r in patt])
|
||||
|
||||
|
||||
def bullets_category(sections):
|
||||
global BULLET_PATTERN
|
||||
hits = [0] * len(BULLET_PATTERN)
|
||||
for i, pro in enumerate(BULLET_PATTERN):
|
||||
for sec in sections:
|
||||
for p in pro:
|
||||
if re.match(p, sec):
|
||||
if re.match(p, sec) and not not_bullet(sec):
|
||||
hits[i] += 1
|
||||
break
|
||||
maxium = 0
|
||||
@ -194,7 +201,7 @@ def title_frequency(bull, sections):
|
||||
|
||||
for i, (txt, layout) in enumerate(sections):
|
||||
for j, p in enumerate(BULLET_PATTERN[bull]):
|
||||
if re.match(p, txt.strip()):
|
||||
if re.match(p, txt.strip()) and not not_bullet(txt):
|
||||
levels[i] = j
|
||||
break
|
||||
else:
|
||||
|
@ -81,21 +81,22 @@ def dispatch():
|
||||
|
||||
tsks = []
|
||||
if r["type"] == FileType.PDF.value:
|
||||
if not r["parser_config"].get("layout_recognize", True):
|
||||
tsks.append(new_task())
|
||||
continue
|
||||
do_layout = r["parser_config"].get("layout_recognize", True)
|
||||
pages = PdfParser.total_page_number(r["name"], MINIO.get(r["kb_id"], r["location"]))
|
||||
page_size = r["parser_config"].get("task_page_size", 12)
|
||||
if r["parser_id"] == "paper": page_size = r["parser_config"].get("task_page_size", 22)
|
||||
if r["parser_id"] == "one": page_size = 1000000000
|
||||
if not do_layout: page_size = 1000000000
|
||||
for s,e in r["parser_config"].get("pages", [(1, 100000)]):
|
||||
s -= 1
|
||||
e = min(e, pages)
|
||||
s = max(0, s)
|
||||
e = min(e-1, pages)
|
||||
for p in range(s, e, page_size):
|
||||
task = new_task()
|
||||
task["from_page"] = p
|
||||
task["to_page"] = min(p + page_size, e)
|
||||
tsks.append(task)
|
||||
|
||||
elif r["parser_id"] == "table":
|
||||
rn = HuExcelParser.row_number(r["name"], MINIO.get(r["kb_id"], r["location"]))
|
||||
for i in range(0, rn, 3000):
|
||||
|
@ -75,7 +75,7 @@ def set_progress(task_id, from_page=0, to_page=-1,
|
||||
|
||||
if to_page > 0:
|
||||
if msg:
|
||||
msg = f"Page({from_page}~{to_page}): " + msg
|
||||
msg = f"Page({from_page+1}~{to_page+1}): " + msg
|
||||
d = {"progress_msg": msg}
|
||||
if prog is not None:
|
||||
d["progress"] = prog
|
||||
|
133
requirements.txt
Normal file
133
requirements.txt
Normal file
@ -0,0 +1,133 @@
|
||||
accelerate==0.27.2
|
||||
aiohttp==3.9.3
|
||||
aiosignal==1.3.1
|
||||
annotated-types==0.6.0
|
||||
anyio==4.3.0
|
||||
argon2-cffi==23.1.0
|
||||
argon2-cffi-bindings==21.2.0
|
||||
Aspose.Slides==24.2.0
|
||||
attrs==23.2.0
|
||||
blinker==1.7.0
|
||||
cachelib==0.12.0
|
||||
cachetools==5.3.3
|
||||
certifi==2024.2.2
|
||||
cffi==1.16.0
|
||||
charset-normalizer==3.3.2
|
||||
click==8.1.7
|
||||
coloredlogs==15.0.1
|
||||
cryptography==42.0.5
|
||||
dashscope==1.14.1
|
||||
datasets==2.17.1
|
||||
datrie==0.8.2
|
||||
demjson==2.2.4
|
||||
dill==0.3.8
|
||||
distro==1.9.0
|
||||
elastic-transport==8.12.0
|
||||
elasticsearch==8.12.1
|
||||
elasticsearch-dsl==8.12.0
|
||||
et-xmlfile==1.1.0
|
||||
filelock==3.13.1
|
||||
FlagEmbedding==1.2.5
|
||||
Flask==3.0.2
|
||||
Flask-Cors==4.0.0
|
||||
Flask-Login==0.6.3
|
||||
Flask-Session==0.6.0
|
||||
flatbuffers==23.5.26
|
||||
frozenlist==1.4.1
|
||||
fsspec==2023.10.0
|
||||
h11==0.14.0
|
||||
hanziconv==0.3.2
|
||||
httpcore==1.0.4
|
||||
httpx==0.27.0
|
||||
huggingface-hub==0.20.3
|
||||
humanfriendly==10.0
|
||||
idna==3.6
|
||||
install==1.3.5
|
||||
itsdangerous==2.1.2
|
||||
Jinja2==3.1.3
|
||||
joblib==1.3.2
|
||||
lxml==5.1.0
|
||||
MarkupSafe==2.1.5
|
||||
minio==7.2.4
|
||||
mpi4py==3.1.5
|
||||
mpmath==1.3.0
|
||||
multidict==6.0.5
|
||||
multiprocess==0.70.16
|
||||
networkx==3.2.1
|
||||
nltk==3.8.1
|
||||
numpy==1.26.4
|
||||
nvidia-cublas-cu12==12.1.3.1
|
||||
nvidia-cuda-cupti-cu12==12.1.105
|
||||
nvidia-cuda-nvrtc-cu12==12.1.105
|
||||
nvidia-cuda-runtime-cu12==12.1.105
|
||||
nvidia-cudnn-cu12==8.9.2.26
|
||||
nvidia-cufft-cu12==11.0.2.54
|
||||
nvidia-curand-cu12==10.3.2.106
|
||||
nvidia-cusolver-cu12==11.4.5.107
|
||||
nvidia-cusparse-cu12==12.1.0.106
|
||||
nvidia-nccl-cu12==2.19.3
|
||||
nvidia-nvjitlink-cu12==12.3.101
|
||||
nvidia-nvtx-cu12==12.1.105
|
||||
onnxruntime-gpu==1.17.1
|
||||
openai==1.12.0
|
||||
opencv-python==4.9.0.80
|
||||
openpyxl==3.1.2
|
||||
packaging==23.2
|
||||
pandas==2.2.1
|
||||
pdfminer.six==20221105
|
||||
pdfplumber==0.10.4
|
||||
peewee==3.17.1
|
||||
pillow==10.2.0
|
||||
protobuf==4.25.3
|
||||
psutil==5.9.8
|
||||
pyarrow==15.0.0
|
||||
pyarrow-hotfix==0.6
|
||||
pyclipper==1.3.0.post5
|
||||
pycparser==2.21
|
||||
pycryptodome==3.20.0
|
||||
pycryptodome-test-vectors==1.0.14
|
||||
pycryptodomex==3.20.0
|
||||
pydantic==2.6.2
|
||||
pydantic_core==2.16.3
|
||||
PyJWT==2.8.0
|
||||
PyMuPDF==1.23.25
|
||||
PyMuPDFb==1.23.22
|
||||
PyMySQL==1.1.0
|
||||
PyPDF2==3.0.1
|
||||
pypdfium2==4.27.0
|
||||
python-dateutil==2.8.2
|
||||
python-docx==1.1.0
|
||||
python-dotenv==1.0.1
|
||||
python-pptx==0.6.23
|
||||
pytz==2024.1
|
||||
PyYAML==6.0.1
|
||||
regex==2023.12.25
|
||||
requests==2.31.0
|
||||
ruamel.yaml==0.18.6
|
||||
ruamel.yaml.clib==0.2.8
|
||||
safetensors==0.4.2
|
||||
scikit-learn==1.4.1.post1
|
||||
scipy==1.12.0
|
||||
sentence-transformers==2.4.0
|
||||
shapely==2.0.3
|
||||
six==1.16.0
|
||||
sniffio==1.3.1
|
||||
StrEnum==0.4.15
|
||||
sympy==1.12
|
||||
threadpoolctl==3.3.0
|
||||
tiktoken==0.6.0
|
||||
tokenizers==0.15.2
|
||||
torch==2.2.1
|
||||
tqdm==4.66.2
|
||||
transformers==4.38.1
|
||||
triton==2.2.0
|
||||
typing_extensions==4.10.0
|
||||
tzdata==2024.1
|
||||
urllib3==2.2.1
|
||||
Werkzeug==3.0.1
|
||||
xgboost==2.0.3
|
||||
XlsxWriter==3.2.0
|
||||
xpinyin==0.7.6
|
||||
xxhash==3.4.1
|
||||
yarl==1.9.4
|
||||
zhipuai==2.0.1
|
@ -193,7 +193,7 @@ const ChunkMethodModal: React.FC<IProps> = ({
|
||||
rules={[
|
||||
{
|
||||
required: true,
|
||||
message: 'Missing end page number(excluding)',
|
||||
message: 'Missing end page number(excluded)',
|
||||
},
|
||||
({ getFieldValue }) => ({
|
||||
validator(_, value) {
|
||||
|
@ -120,7 +120,7 @@ export const TextMap = {
|
||||
</p><p>
|
||||
For a document, it will be treated as an entire chunk, no split at all.
|
||||
</p><p>
|
||||
If you don't trust any chunk method and the selected LLM's context length covers the document length, you can try this method.
|
||||
If you want to summarize something that needs all the context of an article and the selected LLM's context length covers the document length, you can try this method.
|
||||
</p>`,
|
||||
},
|
||||
};
|
||||
|
Loading…
x
Reference in New Issue
Block a user