'load llm infomation from a json file and add support for OpenRouter' (#1533)

### What problem does this PR solve?

#1467 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
This commit is contained in:
黄腾 2024-07-16 15:19:43 +08:00 committed by GitHub
parent 3657b1f2a2
commit 75086f41a9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 2000 additions and 904 deletions

View File

@ -57,8 +57,8 @@ def set_api_key():
mdl = ChatModel[factory](
req["api_key"], llm.llm_name, base_url=req.get("base_url"))
try:
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
"temperature": 0.9})
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
{"temperature": 0.9,'max_tokens':50})
if not tc:
raise Exception(m)
except Exception as e:

View File

@ -89,904 +89,29 @@ def init_superuser():
tenant["embd_id"]))
factory_infos = [{
"name": "OpenAI",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"status": "1",
}, {
"name": "Tongyi-Qianwen",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"status": "1",
}, {
"name": "ZHIPU-AI",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"status": "1",
},
{
"name": "Ollama",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"status": "1",
}, {
"name": "Moonshot",
"logo": "",
"tags": "LLM,TEXT EMBEDDING",
"status": "1",
}, {
"name": "FastEmbed",
"logo": "",
"tags": "TEXT EMBEDDING",
"status": "1",
}, {
"name": "Xinference",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION,TEXT RE-RANK",
"status": "1",
},{
"name": "Youdao",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"status": "1",
},{
"name": "DeepSeek",
"logo": "",
"tags": "LLM",
"status": "1",
},{
"name": "VolcEngine",
"logo": "",
"tags": "LLM, TEXT EMBEDDING",
"status": "1",
},{
"name": "BaiChuan",
"logo": "",
"tags": "LLM,TEXT EMBEDDING",
"status": "1",
},{
"name": "Jina",
"logo": "",
"tags": "TEXT EMBEDDING, TEXT RE-RANK",
"status": "1",
},{
"name": "BAAI",
"logo": "",
"tags": "TEXT EMBEDDING, TEXT RE-RANK",
"status": "1",
},{
"name": "MiniMax",
"logo": "",
"tags": "LLM,TEXT EMBEDDING",
"status": "1",
},{
"name": "Mistral",
"logo": "",
"tags": "LLM,TEXT EMBEDDING",
"status": "1",
},{
"name": "Azure-OpenAI",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"status": "1",
},{
"name": "Bedrock",
"logo": "",
"tags": "LLM,TEXT EMBEDDING",
"status": "1",
},{
"name": "Gemini",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,IMAGE2TEXT",
"status": "1",
},
{
"name": "Groq",
"logo": "",
"tags": "LLM",
"status": "1",
}
# {
# "name": "文心一言",
# "logo": "",
# "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
# "status": "1",
# },
]
def init_llm_factory():
llm_infos = [
# ---------------------- OpenAI ------------------------
{
"fid": factory_infos[0]["name"],
"llm_name": "gpt-4o",
"tags": "LLM,CHAT,128K",
"max_tokens": 128000,
"model_type": LLMType.CHAT.value + "," + LLMType.IMAGE2TEXT.value
}, {
"fid": factory_infos[0]["name"],
"llm_name": "gpt-3.5-turbo",
"tags": "LLM,CHAT,4K",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[0]["name"],
"llm_name": "gpt-3.5-turbo-16k-0613",
"tags": "LLM,CHAT,16k",
"max_tokens": 16385,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[0]["name"],
"llm_name": "text-embedding-ada-002",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[0]["name"],
"llm_name": "text-embedding-3-small",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[0]["name"],
"llm_name": "text-embedding-3-large",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[0]["name"],
"llm_name": "whisper-1",
"tags": "SPEECH2TEXT",
"max_tokens": 25 * 1024 * 1024,
"model_type": LLMType.SPEECH2TEXT.value
}, {
"fid": factory_infos[0]["name"],
"llm_name": "gpt-4",
"tags": "LLM,CHAT,8K",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[0]["name"],
"llm_name": "gpt-4-turbo",
"tags": "LLM,CHAT,8K",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
},{
"fid": factory_infos[0]["name"],
"llm_name": "gpt-4-32k",
"tags": "LLM,CHAT,32K",
"max_tokens": 32768,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[0]["name"],
"llm_name": "gpt-4-vision-preview",
"tags": "LLM,CHAT,IMAGE2TEXT",
"max_tokens": 765,
"model_type": LLMType.IMAGE2TEXT.value
},
# ----------------------- Qwen -----------------------
{
"fid": factory_infos[1]["name"],
"llm_name": "qwen-turbo",
"tags": "LLM,CHAT,8K",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[1]["name"],
"llm_name": "qwen-plus",
"tags": "LLM,CHAT,32K",
"max_tokens": 32768,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[1]["name"],
"llm_name": "qwen-max-1201",
"tags": "LLM,CHAT,6K",
"max_tokens": 5899,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[1]["name"],
"llm_name": "text-embedding-v2",
"tags": "TEXT EMBEDDING,2K",
"max_tokens": 2048,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[1]["name"],
"llm_name": "paraformer-realtime-8k-v1",
"tags": "SPEECH2TEXT",
"max_tokens": 25 * 1024 * 1024,
"model_type": LLMType.SPEECH2TEXT.value
}, {
"fid": factory_infos[1]["name"],
"llm_name": "qwen-vl-max",
"tags": "LLM,CHAT,IMAGE2TEXT",
"max_tokens": 765,
"model_type": LLMType.IMAGE2TEXT.value
},
# ---------------------- ZhipuAI ----------------------
{
"fid": factory_infos[2]["name"],
"llm_name": "glm-3-turbo",
"tags": "LLM,CHAT,",
"max_tokens": 128 * 1000,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[2]["name"],
"llm_name": "glm-4",
"tags": "LLM,CHAT,",
"max_tokens": 128 * 1000,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[2]["name"],
"llm_name": "glm-4v",
"tags": "LLM,CHAT,IMAGE2TEXT",
"max_tokens": 2000,
"model_type": LLMType.IMAGE2TEXT.value
},
{
"fid": factory_infos[2]["name"],
"llm_name": "embedding-2",
"tags": "TEXT EMBEDDING",
"max_tokens": 512,
"model_type": LLMType.EMBEDDING.value
},
# ------------------------ Moonshot -----------------------
{
"fid": factory_infos[4]["name"],
"llm_name": "moonshot-v1-8k",
"tags": "LLM,CHAT,",
"max_tokens": 7900,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[4]["name"],
"llm_name": "moonshot-v1-32k",
"tags": "LLM,CHAT,",
"max_tokens": 32768,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[4]["name"],
"llm_name": "moonshot-v1-128k",
"tags": "LLM,CHAT",
"max_tokens": 128 * 1000,
"model_type": LLMType.CHAT.value
},
# ------------------------ FastEmbed -----------------------
{
"fid": factory_infos[5]["name"],
"llm_name": "BAAI/bge-small-en-v1.5",
"tags": "TEXT EMBEDDING,",
"max_tokens": 512,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[5]["name"],
"llm_name": "BAAI/bge-small-zh-v1.5",
"tags": "TEXT EMBEDDING,",
"max_tokens": 512,
"model_type": LLMType.EMBEDDING.value
}, {
}, {
"fid": factory_infos[5]["name"],
"llm_name": "BAAI/bge-base-en-v1.5",
"tags": "TEXT EMBEDDING,",
"max_tokens": 512,
"model_type": LLMType.EMBEDDING.value
}, {
}, {
"fid": factory_infos[5]["name"],
"llm_name": "BAAI/bge-large-en-v1.5",
"tags": "TEXT EMBEDDING,",
"max_tokens": 512,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[5]["name"],
"llm_name": "sentence-transformers/all-MiniLM-L6-v2",
"tags": "TEXT EMBEDDING,",
"max_tokens": 512,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[5]["name"],
"llm_name": "nomic-ai/nomic-embed-text-v1.5",
"tags": "TEXT EMBEDDING,",
"max_tokens": 8192,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[5]["name"],
"llm_name": "jinaai/jina-embeddings-v2-small-en",
"tags": "TEXT EMBEDDING,",
"max_tokens": 2147483648,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[5]["name"],
"llm_name": "jinaai/jina-embeddings-v2-base-en",
"tags": "TEXT EMBEDDING,",
"max_tokens": 2147483648,
"model_type": LLMType.EMBEDDING.value
},
# ------------------------ Youdao -----------------------
{
"fid": factory_infos[7]["name"],
"llm_name": "maidalun1020/bce-embedding-base_v1",
"tags": "TEXT EMBEDDING,",
"max_tokens": 512,
"model_type": LLMType.EMBEDDING.value
},
{
"fid": factory_infos[7]["name"],
"llm_name": "maidalun1020/bce-reranker-base_v1",
"tags": "RE-RANK, 512",
"max_tokens": 512,
"model_type": LLMType.RERANK.value
},
# ------------------------ DeepSeek -----------------------
{
"fid": factory_infos[8]["name"],
"llm_name": "deepseek-chat",
"tags": "LLM,CHAT,",
"max_tokens": 32768,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[8]["name"],
"llm_name": "deepseek-coder",
"tags": "LLM,CHAT,",
"max_tokens": 16385,
"model_type": LLMType.CHAT.value
},
# ------------------------ VolcEngine -----------------------
{
"fid": factory_infos[9]["name"],
"llm_name": "Skylark2-pro-32k",
"tags": "LLM,CHAT,32k",
"max_tokens": 32768,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[9]["name"],
"llm_name": "Skylark2-pro-4k",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
},
# ------------------------ BaiChuan -----------------------
{
"fid": factory_infos[10]["name"],
"llm_name": "Baichuan2-Turbo",
"tags": "LLM,CHAT,32K",
"max_tokens": 32768,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[10]["name"],
"llm_name": "Baichuan2-Turbo-192k",
"tags": "LLM,CHAT,192K",
"max_tokens": 196608,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[10]["name"],
"llm_name": "Baichuan3-Turbo",
"tags": "LLM,CHAT,32K",
"max_tokens": 32768,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[10]["name"],
"llm_name": "Baichuan3-Turbo-128k",
"tags": "LLM,CHAT,128K",
"max_tokens": 131072,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[10]["name"],
"llm_name": "Baichuan4",
"tags": "LLM,CHAT,128K",
"max_tokens": 131072,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[10]["name"],
"llm_name": "Baichuan-Text-Embedding",
"tags": "TEXT EMBEDDING",
"max_tokens": 512,
"model_type": LLMType.EMBEDDING.value
},
# ------------------------ Jina -----------------------
{
"fid": factory_infos[11]["name"],
"llm_name": "jina-reranker-v1-base-en",
"tags": "RE-RANK,8k",
"max_tokens": 8196,
"model_type": LLMType.RERANK.value
},
{
"fid": factory_infos[11]["name"],
"llm_name": "jina-reranker-v1-turbo-en",
"tags": "RE-RANK,8k",
"max_tokens": 8196,
"model_type": LLMType.RERANK.value
},
{
"fid": factory_infos[11]["name"],
"llm_name": "jina-reranker-v1-tiny-en",
"tags": "RE-RANK,8k",
"max_tokens": 8196,
"model_type": LLMType.RERANK.value
},
{
"fid": factory_infos[11]["name"],
"llm_name": "jina-colbert-v1-en",
"tags": "RE-RANK,8k",
"max_tokens": 8196,
"model_type": LLMType.RERANK.value
},
{
"fid": factory_infos[11]["name"],
"llm_name": "jina-embeddings-v2-base-en",
"tags": "TEXT EMBEDDING",
"max_tokens": 8196,
"model_type": LLMType.EMBEDDING.value
},
{
"fid": factory_infos[11]["name"],
"llm_name": "jina-embeddings-v2-base-de",
"tags": "TEXT EMBEDDING",
"max_tokens": 8196,
"model_type": LLMType.EMBEDDING.value
},
{
"fid": factory_infos[11]["name"],
"llm_name": "jina-embeddings-v2-base-es",
"tags": "TEXT EMBEDDING",
"max_tokens": 8196,
"model_type": LLMType.EMBEDDING.value
},
{
"fid": factory_infos[11]["name"],
"llm_name": "jina-embeddings-v2-base-code",
"tags": "TEXT EMBEDDING",
"max_tokens": 8196,
"model_type": LLMType.EMBEDDING.value
},
{
"fid": factory_infos[11]["name"],
"llm_name": "jina-embeddings-v2-base-zh",
"tags": "TEXT EMBEDDING",
"max_tokens": 8196,
"model_type": LLMType.EMBEDDING.value
},
# ------------------------ BAAI -----------------------
{
"fid": factory_infos[12]["name"],
"llm_name": "BAAI/bge-large-zh-v1.5",
"tags": "TEXT EMBEDDING,",
"max_tokens": 1024,
"model_type": LLMType.EMBEDDING.value
},
{
"fid": factory_infos[12]["name"],
"llm_name": "BAAI/bge-reranker-v2-m3",
"tags": "RE-RANK,2k",
"max_tokens": 2048,
"model_type": LLMType.RERANK.value
},
# ------------------------ Minimax -----------------------
{
"fid": factory_infos[13]["name"],
"llm_name": "abab6.5",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[13]["name"],
"llm_name": "abab6.5s",
"tags": "LLM,CHAT,245k",
"max_tokens": 245760,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[13]["name"],
"llm_name": "abab6.5t",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[13]["name"],
"llm_name": "abab6.5g",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[13]["name"],
"llm_name": "abab5.5s",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
},
# ------------------------ Mistral -----------------------
{
"fid": factory_infos[14]["name"],
"llm_name": "open-mixtral-8x22b",
"tags": "LLM,CHAT,64k",
"max_tokens": 64000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "open-mixtral-8x7b",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "open-mistral-7b",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "mistral-large-latest",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "mistral-small-latest",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "mistral-medium-latest",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "codestral-latest",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[14]["name"],
"llm_name": "mistral-embed",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.EMBEDDING
},
# ------------------------ Azure OpenAI -----------------------
# Please ensure the llm_name is the same as the name in Azure
# OpenAI deployment name (e.g., azure-gpt-4o). And the llm_name
# must different from the OpenAI llm_name
#
# Each model must be deployed in the Azure OpenAI service, otherwise,
# you will receive an error message 'The API deployment for
# this resource does not exist'
{
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-4o",
"tags": "LLM,CHAT,128K",
"max_tokens": 128000,
"model_type": LLMType.CHAT.value + "," + LLMType.IMAGE2TEXT.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-35-turbo",
"tags": "LLM,CHAT,4K",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-35-turbo-16k",
"tags": "LLM,CHAT,16k",
"max_tokens": 16385,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-text-embedding-ada-002",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-text-embedding-3-small",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-text-embedding-3-large",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": LLMType.EMBEDDING.value
},{
"fid": factory_infos[15]["name"],
"llm_name": "azure-whisper-1",
"tags": "SPEECH2TEXT",
"max_tokens": 25 * 1024 * 1024,
"model_type": LLMType.SPEECH2TEXT.value
},
{
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-4",
"tags": "LLM,CHAT,8K",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-4-turbo",
"tags": "LLM,CHAT,8K",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-4-32k",
"tags": "LLM,CHAT,32K",
"max_tokens": 32768,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[15]["name"],
"llm_name": "azure-gpt-4-vision-preview",
"tags": "LLM,CHAT,IMAGE2TEXT",
"max_tokens": 765,
"model_type": LLMType.IMAGE2TEXT.value
},
# ------------------------ Bedrock -----------------------
{
"fid": factory_infos[16]["name"],
"llm_name": "ai21.j2-ultra-v1",
"tags": "LLM,CHAT,8k",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "ai21.j2-mid-v1",
"tags": "LLM,CHAT,8k",
"max_tokens": 8191,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "cohere.command-text-v14",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "cohere.command-light-text-v14",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "cohere.command-r-v1:0",
"tags": "LLM,CHAT,128k",
"max_tokens": 128 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "cohere.command-r-plus-v1:0",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-v2",
"tags": "LLM,CHAT,100k",
"max_tokens": 100 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-v2:1",
"tags": "LLM,CHAT,200k",
"max_tokens": 200 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-3-sonnet-20240229-v1:0",
"tags": "LLM,CHAT,200k",
"max_tokens": 200 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-3-5-sonnet-20240620-v1:0",
"tags": "LLM,CHAT,200k",
"max_tokens": 200 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-3-haiku-20240307-v1:0",
"tags": "LLM,CHAT,200k",
"max_tokens": 200 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-3-opus-20240229-v1:0",
"tags": "LLM,CHAT,200k",
"max_tokens": 200 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "anthropic.claude-instant-v1",
"tags": "LLM,CHAT,100k",
"max_tokens": 100 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "amazon.titan-text-express-v1",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "amazon.titan-text-premier-v1:0",
"tags": "LLM,CHAT,32k",
"max_tokens": 32 * 1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "amazon.titan-text-lite-v1",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "meta.llama2-13b-chat-v1",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "meta.llama2-70b-chat-v1",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "meta.llama3-8b-instruct-v1:0",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "meta.llama3-70b-instruct-v1:0",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "mistral.mistral-7b-instruct-v0:2",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "mistral.mixtral-8x7b-instruct-v0:1",
"tags": "LLM,CHAT,4k",
"max_tokens": 4096,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "mistral.mistral-large-2402-v1:0",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "mistral.mistral-small-2402-v1:0",
"tags": "LLM,CHAT,8k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "amazon.titan-embed-text-v2:0",
"tags": "TEXT EMBEDDING",
"max_tokens": 8192,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "cohere.embed-english-v3",
"tags": "TEXT EMBEDDING",
"max_tokens": 2048,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[16]["name"],
"llm_name": "cohere.embed-multilingual-v3",
"tags": "TEXT EMBEDDING",
"max_tokens": 2048,
"model_type": LLMType.EMBEDDING.value
}, {
"fid": factory_infos[17]["name"],
"llm_name": "gemini-1.5-pro-latest",
"tags": "LLM,CHAT,1024K",
"max_tokens": 1024*1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[17]["name"],
"llm_name": "gemini-1.5-flash-latest",
"tags": "LLM,CHAT,1024K",
"max_tokens": 1024*1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[17]["name"],
"llm_name": "gemini-1.0-pro",
"tags": "LLM,CHAT,30K",
"max_tokens": 30*1024,
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[17]["name"],
"llm_name": "gemini-1.0-pro-vision-latest",
"tags": "LLM,IMAGE2TEXT,12K",
"max_tokens": 12*1024,
"model_type": LLMType.IMAGE2TEXT.value
}, {
"fid": factory_infos[17]["name"],
"llm_name": "text-embedding-004",
"tags": "TEXT EMBEDDING",
"max_tokens": 2048,
"model_type": LLMType.EMBEDDING.value
},
# ------------------------ Groq -----------------------
{
"fid": factory_infos[18]["name"],
"llm_name": "gemma-7b-it",
"tags": "LLM,CHAT,15k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[18]["name"],
"llm_name": "gemma2-9b-it",
"tags": "LLM,CHAT,15k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[18]["name"],
"llm_name": "llama3-70b-8192",
"tags": "LLM,CHAT,6k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[18]["name"],
"llm_name": "llama3-8b-8192",
"tags": "LLM,CHAT,30k",
"max_tokens": 8192,
"model_type": LLMType.CHAT.value
},
{
"fid": factory_infos[18]["name"],
"llm_name": "mixtral-8x7b-32768",
"tags": "LLM,CHAT,5k",
"max_tokens": 32768,
"model_type": LLMType.CHAT.value
}
]
for info in factory_infos:
factory_llm_infos = json.load(
open(
os.path.join(get_project_base_directory(), "conf", "llm_factories.json"),
"r",
)
)
for factory_llm_info in factory_llm_infos["factory_llm_infos"]:
llm_infos = factory_llm_info.pop("llm")
try:
LLMFactoriesService.save(**info)
except Exception as e:
pass
LLMService.filter_delete([(LLM.fid == "MiniMax" or LLM.fid == "Minimax")])
for info in llm_infos:
try:
LLMService.save(**info)
LLMFactoriesService.save(**factory_llm_info)
except Exception as e:
pass
for llm_info in llm_infos:
llm_info["fid"] = factory_llm_info["name"]
try:
LLMService.save(**llm_info)
except Exception as e:
pass
try:
LLMService.filter_delete([(LLM.fid == "MiniMax" or LLM.fid == "Minimax")])
except Exception as e:
pass
LLMFactoriesService.filter_delete([LLMFactories.name == "Local"])
LLMService.filter_delete([LLM.fid == "Local"])

1884
conf/llm_factories.json Normal file

File diff suppressed because it is too large Load Diff

View File

@ -45,7 +45,8 @@ CvModel = {
"Tongyi-Qianwen": QWenCV,
"ZHIPU-AI": Zhipu4V,
"Moonshot": LocalCV,
'Gemini':GeminiCV
'Gemini':GeminiCV,
'OpenRouter':OpenRouterCV
}
@ -65,7 +66,8 @@ ChatModel = {
"Mistral": MistralChat,
'Gemini' : GeminiChat,
"Bedrock": BedrockChat,
"Groq": GroqChat
"Groq": GroqChat,
'OpenRouter':OpenRouterChat
}

View File

@ -685,7 +685,6 @@ class GeminiChat(Base):
yield response._chunks[-1].usage_metadata.total_token_count
class GroqChat:
def __init__(self, key, model_name,base_url=''):
self.client = Groq(api_key=key)
@ -697,7 +696,6 @@ class GroqChat:
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
ans = ""
try:
response = self.client.chat.completions.create(
@ -707,7 +705,7 @@ class GroqChat:
)
ans = response.choices[0].message.content
if response.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if self.is_english(
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
return ans, response.usage.total_tokens
except Exception as e:
@ -734,7 +732,7 @@ class GroqChat:
ans += resp.choices[0].delta.content
total_tokens += 1
if resp.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if self.is_english(
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
yield ans
@ -742,3 +740,12 @@ class GroqChat:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
## openrouter
class OpenRouterChat(Base):
def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"):
self.base_url = "https://openrouter.ai/api/v1"
self.client = OpenAI(base_url=self.base_url, api_key=key)
self.model_name = model_name

View File

@ -23,6 +23,8 @@ from openai import OpenAI
import os
import base64
from io import BytesIO
import json
import requests
from api.utils import get_uuid
from api.utils.file_utils import get_project_base_directory
@ -227,6 +229,63 @@ class GeminiCV(Base):
)
return res.text,res.usage_metadata.total_token_count
class OpenRouterCV(Base):
def __init__(
self,
key,
model_name,
lang="Chinese",
base_url="https://openrouter.ai/api/v1/chat/completions",
):
self.model_name = model_name
self.lang = lang
self.base_url = "https://openrouter.ai/api/v1/chat/completions"
self.key = key
def describe(self, image, max_tokens=300):
b64 = self.image2base64(image)
response = requests.post(
url=self.base_url,
headers={
"Authorization": f"Bearer {self.key}",
},
data=json.dumps(
{
"model": self.model_name,
"messages": self.prompt(b64),
"max_tokens": max_tokens,
}
),
)
response = response.json()
return (
response["choices"][0]["message"]["content"].strip(),
response["usage"]["total_tokens"],
)
def prompt(self, b64):
return [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{b64}"},
},
{
"type": "text",
"text": (
"请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
if self.lang.lower() == "chinese"
else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
),
},
],
}
]
class LocalCV(Base):
def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
pass

View File

@ -0,0 +1,18 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" enable-background="new 0 0 16 16" xml:space="preserve"> <image id="image0" width="16" height="16" x="0" y="0"
xlink:href="
AAB1MAAA6mAAADqYAAAXcJy6UTwAAADnUExURQAAAJSkuZeluJmZmZajt5SkuZSkuJSkuJSjuJSj
uJSkuZOnupaju5Sjt5WjuJSiuYuiuZajuZWjuJSjuJSiuJKktr+/v5WkuZSjuJSjuJSkt5ent5eh
vZWkuZSjuJWjuZWjuZSiuJSjuJSkuP///5Oit4CAgJSjuJeiuZSjuJSkuZmZzJOlt5WkuJSkuJSm
uJSkuJSjuJmzs5Oit5Sjt5SjuJWkuZWjuZWjuZSjuJCmsZOkupSjuJSjuJOjuJWqqpSkuJSjt5Sj
uI+fv5ilupSkupWjuJSit5WkuJOfuZOjt5SjuP///6MuKmIAAABLdFJOUwCdNgVOkbG48/2gGkvd
8m4Llv7+pRwEVNzDUSAb2so6su33cAFHAtYs+4MFR4nlK7AyCof8/LmOi5sXO97wYQx+5PoQJUNI
8rYoQFP//YUAAAABYktHRCS0BvmZAAAAB3RJTUUH6AcMBxoClVndlQAAAI5JREFUGNNjYMADGJkQ
bGYWVjZ2Dk4ubiifh9cbAvj4QVwBQSEoX1hElIFBTFwCyJSUkpaRlZMHSisoArlKyipApqoaSD1I
pboGkl0gAU0tbYSAjq4eUEhOH8g0MIQIGRmbeHubmplbKJlaWkGErG2g1nrb2kFE7B0cwXwnc2eY
USourm7uHp6onvPC6mUAFZcZIrBzIB0AAAAldEVYdGRhdGU6Y3JlYXRlADIwMjQtMDctMTJUMDc6
MjY6MDIrMDA6MDClm05uAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDI0LTA3LTEyVDA3OjI2OjAyKzAw
OjAw1Mb20gAAACh0RVh0ZGF0ZTp0aW1lc3RhbXAAMjAyNC0wNy0xMlQwNzoyNjowMiswMDowMIPT
1w0AAAAASUVORK5CYII=" />
</svg>

After

Width:  |  Height:  |  Size: 1.5 KiB

View File

@ -63,6 +63,7 @@ const IconMap = {
Bedrock: 'bedrock',
Gemini:'gemini',
Groq: 'Groq',
OpenRouter:'open-router'
};
const LlmIcon = ({ name }: { name: string }) => {