mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-20 01:49:08 +08:00
Add doc meta data. (#4442)
### What problem does this PR solve? #3690 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
parent
4dde73f897
commit
7d909d4d1b
@ -116,8 +116,7 @@ def get():
|
||||
|
||||
@manager.route('/set', methods=['POST']) # noqa: F821
|
||||
@login_required
|
||||
@validate_request("doc_id", "chunk_id", "content_with_weight",
|
||||
"important_kwd", "question_kwd")
|
||||
@validate_request("doc_id", "chunk_id", "content_with_weight")
|
||||
def set():
|
||||
req = request.json
|
||||
d = {
|
||||
@ -125,14 +124,16 @@ def set():
|
||||
"content_with_weight": req["content_with_weight"]}
|
||||
d["content_ltks"] = rag_tokenizer.tokenize(req["content_with_weight"])
|
||||
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
||||
if req.get("important_kwd"):
|
||||
if "important_kwd" in req:
|
||||
d["important_kwd"] = req["important_kwd"]
|
||||
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"]))
|
||||
if req.get("question_kwd"):
|
||||
if "question_kwd" in req:
|
||||
d["question_kwd"] = req["question_kwd"]
|
||||
d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["question_kwd"]))
|
||||
if req.get("tag_kwd"):
|
||||
if "tag_kwd" in req:
|
||||
d["tag_kwd"] = req["tag_kwd"]
|
||||
if "tag_feas" in req:
|
||||
d["tag_feas"] = req["tag_feas"]
|
||||
if "available_int" in req:
|
||||
d["available_int"] = req["available_int"]
|
||||
|
||||
@ -157,7 +158,7 @@ def set():
|
||||
d = beAdoc(d, arr[0], arr[1], not any(
|
||||
[rag_tokenizer.is_chinese(t) for t in q + a]))
|
||||
|
||||
v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
|
||||
v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
|
||||
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
|
||||
d["q_%d_vec" % len(v)] = v.tolist()
|
||||
settings.docStoreConn.update({"id": req["chunk_id"]}, d, search.index_name(tenant_id), doc.kb_id)
|
||||
|
@ -27,12 +27,13 @@ from flask_login import login_required, current_user
|
||||
from api.db import LLMType
|
||||
from api.db.services.dialog_service import DialogService, chat, ask, label_question
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import LLMBundle, TenantService, TenantLLMService
|
||||
from api.db.services.llm_service import LLMBundle, TenantService
|
||||
from api import settings
|
||||
from api.utils.api_utils import get_json_result
|
||||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||||
from graphrag.mind_map_extractor import MindMapExtractor
|
||||
|
||||
|
||||
@manager.route('/set', methods=['POST']) # noqa: F821
|
||||
@login_required
|
||||
def set_conversation():
|
||||
@ -376,8 +377,7 @@ def mindmap():
|
||||
if not e:
|
||||
return get_data_error_result(message="Knowledgebase not found!")
|
||||
|
||||
embd_mdl = TenantLLMService.model_instance(
|
||||
kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
|
||||
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
|
||||
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
|
||||
question = req["question"]
|
||||
ranks = settings.retrievaler.retrieval(question, embd_mdl, kb.tenant_id, kb_ids, 1, 12,
|
||||
|
@ -13,6 +13,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License
|
||||
#
|
||||
import json
|
||||
import os.path
|
||||
import pathlib
|
||||
import re
|
||||
@ -593,3 +594,34 @@ def parse():
|
||||
txt = FileService.parse_docs(file_objs, current_user.id)
|
||||
|
||||
return get_json_result(data=txt)
|
||||
|
||||
|
||||
@manager.route('/set_meta', methods=['POST']) # noqa: F821
|
||||
@login_required
|
||||
@validate_request("doc_id", "meta")
|
||||
def set_meta():
|
||||
req = request.json
|
||||
if not DocumentService.accessible(req["doc_id"], current_user.id):
|
||||
return get_json_result(
|
||||
data=False,
|
||||
message='No authorization.',
|
||||
code=settings.RetCode.AUTHENTICATION_ERROR
|
||||
)
|
||||
try:
|
||||
meta = json.loads(req["meta"])
|
||||
except Exception as e:
|
||||
return get_json_result(
|
||||
data=False, message=f'Json syntax error: {e}', code=settings.RetCode.ARGUMENT_ERROR)
|
||||
try:
|
||||
e, doc = DocumentService.get_by_id(req["doc_id"])
|
||||
if not e:
|
||||
return get_data_error_result(message="Document not found!")
|
||||
|
||||
if not DocumentService.update_by_id(
|
||||
req["doc_id"], {"meta_fields": meta}):
|
||||
return get_data_error_result(
|
||||
message="Database error (meta updates)!")
|
||||
|
||||
return get_json_result(data=True)
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
@ -760,6 +760,7 @@ class Document(DataBaseModel):
|
||||
default="")
|
||||
process_begin_at = DateTimeField(null=True, index=True)
|
||||
process_duation = FloatField(default=0)
|
||||
meta_fields = JSONField(null=True, default={})
|
||||
|
||||
run = CharField(
|
||||
max_length=1,
|
||||
@ -1112,3 +1113,10 @@ def migrate_db():
|
||||
)
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
migrate(
|
||||
migrator.add_column("document", "meta_fields",
|
||||
JSONField(null=True, default={}))
|
||||
)
|
||||
except Exception:
|
||||
pass
|
||||
|
@ -122,15 +122,17 @@ def kb_prompt(kbinfos, max_tokens):
|
||||
knowledges = knowledges[:i]
|
||||
break
|
||||
|
||||
#docs = DocumentService.get_by_ids([ck["doc_id"] for ck in kbinfos["chunks"][:chunks_num]])
|
||||
#docs = {d.id: d.meta_fields for d in docs}
|
||||
|
||||
doc2chunks = defaultdict(list)
|
||||
for i, ck in enumerate(kbinfos["chunks"]):
|
||||
if i >= chunks_num:
|
||||
break
|
||||
for ck in kbinfos["chunks"][:chunks_num]:
|
||||
doc2chunks[ck["docnm_kwd"]].append(ck["content_with_weight"])
|
||||
|
||||
knowledges = []
|
||||
for nm, chunks in doc2chunks.items():
|
||||
txt = f"Document: {nm} \nContains the following relevant fragments:\n"
|
||||
txt = f"Document: {nm} \n"
|
||||
txt += "Contains the following relevant fragments:\n"
|
||||
for i, chunk in enumerate(chunks, 1):
|
||||
txt += f"{i}. {chunk}\n"
|
||||
knowledges.append(txt)
|
||||
|
Loading…
x
Reference in New Issue
Block a user