mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-12 22:29:02 +08:00
feat: FastEmbed embedding support (#291)
### Description Following up on https://github.com/infiniflow/ragflow/pull/275, this PR adds support for FastEmbed model configurations. The options are not exhaustive. You can find the full list [here](https://qdrant.github.io/fastembed/examples/Supported_Models/). P.S. I ran into OOM issues when building the image. ### Type of change - [x] New Feature (non-breaking change which adds functionality) --------- Co-authored-by: KevinHuSh <kevinhu.sh@gmail.com>
This commit is contained in:
parent
e5a5b820a8
commit
826ad6a33a
@ -109,6 +109,11 @@ factory_infos = [{
|
||||
"logo": "",
|
||||
"tags": "LLM,TEXT EMBEDDING",
|
||||
"status": "1",
|
||||
}, {
|
||||
"name": "FastEmbed",
|
||||
"logo": "",
|
||||
"tags": "TEXT EMBEDDING",
|
||||
"status": "1",
|
||||
},
|
||||
{
|
||||
"name": "Xinference",
|
||||
@ -268,6 +273,58 @@ def init_llm_factory():
|
||||
"max_tokens": 128 * 1000,
|
||||
"model_type": LLMType.CHAT.value
|
||||
},
|
||||
# ------------------------ FastEmbed -----------------------
|
||||
{
|
||||
"fid": factory_infos[5]["name"],
|
||||
"llm_name": "BAAI/bge-small-en-v1.5",
|
||||
"tags": "TEXT EMBEDDING,",
|
||||
"max_tokens": 512,
|
||||
"model_type": LLMType.EMBEDDING.value
|
||||
}, {
|
||||
"fid": factory_infos[5]["name"],
|
||||
"llm_name": "BAAI/bge-small-zh-v1.5",
|
||||
"tags": "TEXT EMBEDDING,",
|
||||
"max_tokens": 512,
|
||||
"model_type": LLMType.EMBEDDING.value
|
||||
}, {
|
||||
}, {
|
||||
"fid": factory_infos[5]["name"],
|
||||
"llm_name": "BAAI/bge-base-en-v1.5",
|
||||
"tags": "TEXT EMBEDDING,",
|
||||
"max_tokens": 512,
|
||||
"model_type": LLMType.EMBEDDING.value
|
||||
}, {
|
||||
}, {
|
||||
"fid": factory_infos[5]["name"],
|
||||
"llm_name": "BAAI/bge-large-en-v1.5",
|
||||
"tags": "TEXT EMBEDDING,",
|
||||
"max_tokens": 512,
|
||||
"model_type": LLMType.EMBEDDING.value
|
||||
}, {
|
||||
"fid": factory_infos[5]["name"],
|
||||
"llm_name": "sentence-transformers/all-MiniLM-L6-v2",
|
||||
"tags": "TEXT EMBEDDING,",
|
||||
"max_tokens": 512,
|
||||
"model_type": LLMType.EMBEDDING.value
|
||||
}, {
|
||||
"fid": factory_infos[5]["name"],
|
||||
"llm_name": "nomic-ai/nomic-embed-text-v1.5",
|
||||
"tags": "TEXT EMBEDDING,",
|
||||
"max_tokens": 8192,
|
||||
"model_type": LLMType.EMBEDDING.value
|
||||
}, {
|
||||
"fid": factory_infos[5]["name"],
|
||||
"llm_name": "jinaai/jina-embeddings-v2-small-en",
|
||||
"tags": "TEXT EMBEDDING,",
|
||||
"max_tokens": 2147483648,
|
||||
"model_type": LLMType.EMBEDDING.value
|
||||
}, {
|
||||
"fid": factory_infos[5]["name"],
|
||||
"llm_name": "jinaai/jina-embeddings-v2-base-en",
|
||||
"tags": "TEXT EMBEDDING,",
|
||||
"max_tokens": 2147483648,
|
||||
"model_type": LLMType.EMBEDDING.value
|
||||
},
|
||||
]
|
||||
for info in factory_infos:
|
||||
try:
|
||||
|
@ -24,7 +24,8 @@ EmbeddingModel = {
|
||||
"Xinference": XinferenceEmbed,
|
||||
"Tongyi-Qianwen": HuEmbedding, #QWenEmbed,
|
||||
"ZHIPU-AI": ZhipuEmbed,
|
||||
"Moonshot": HuEmbedding
|
||||
"Moonshot": HuEmbedding,
|
||||
"FastEmbed": FastEmbed
|
||||
}
|
||||
|
||||
|
||||
|
@ -13,12 +13,14 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
from typing import Optional
|
||||
from zhipuai import ZhipuAI
|
||||
import os
|
||||
from abc import ABC
|
||||
from ollama import Client
|
||||
import dashscope
|
||||
from openai import OpenAI
|
||||
from fastembed import TextEmbedding
|
||||
from FlagEmbedding import FlagModel
|
||||
import torch
|
||||
import numpy as np
|
||||
@ -172,6 +174,34 @@ class OllamaEmbed(Base):
|
||||
return np.array(res["embedding"]), 128
|
||||
|
||||
|
||||
class FastEmbed(Base):
|
||||
def __init__(
|
||||
self,
|
||||
key: Optional[str] = None,
|
||||
model_name: str = "BAAI/bge-small-en-v1.5",
|
||||
cache_dir: Optional[str] = None,
|
||||
threads: Optional[int] = None,
|
||||
**kwargs,
|
||||
):
|
||||
self._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
|
||||
|
||||
def encode(self, texts: list, batch_size=32):
|
||||
# Using the internal tokenizer to encode the texts and get the total number of tokens
|
||||
encodings = self._model.model.tokenizer.encode_batch(texts)
|
||||
total_tokens = sum(len(e) for e in encodings)
|
||||
|
||||
embeddings = [e.tolist() for e in self._model.embed(texts, batch_size)]
|
||||
|
||||
return np.array(embeddings), total_tokens
|
||||
|
||||
def encode_queries(self, text: str):
|
||||
# Using the internal tokenizer to encode the texts and get the total number of tokens
|
||||
encoding = self._model.model.tokenizer.encode(text)
|
||||
embedding = next(self._model.query_embed(text)).tolist()
|
||||
|
||||
return np.array(embedding), len(encoding.ids)
|
||||
|
||||
|
||||
class XinferenceEmbed(Base):
|
||||
def __init__(self, key, model_name="", base_url=""):
|
||||
self.client = OpenAI(api_key="xxx", base_url=base_url)
|
||||
@ -187,3 +217,4 @@ class XinferenceEmbed(Base):
|
||||
res = self.client.embeddings.create(input=[text],
|
||||
model=self.model_name)
|
||||
return np.array(res.data[0].embedding), res.usage.total_tokens
|
||||
|
||||
|
@ -27,6 +27,7 @@ elasticsearch==8.12.1
|
||||
elasticsearch-dsl==8.12.0
|
||||
et-xmlfile==1.1.0
|
||||
filelock==3.13.1
|
||||
fastembed==0.2.6
|
||||
FlagEmbedding==1.2.5
|
||||
Flask==3.0.2
|
||||
Flask-Cors==4.0.0
|
||||
|
Loading…
x
Reference in New Issue
Block a user