mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-13 04:59:03 +08:00
Update version info to v0.14.1 (#3720)
### What problem does this PR solve? Update version info to v0.14.1 ### Type of change - [x] Documentation Update --------- Signed-off-by: jinhai <haijin.chn@gmail.com>
This commit is contained in:
parent
a3e0ac9c0b
commit
834c4d81f3
@ -20,7 +20,7 @@
|
||||
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.0">
|
||||
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.1-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.1">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
|
||||
@ -176,14 +176,14 @@ releases! 🌟
|
||||
```
|
||||
|
||||
> - To download a RAGFlow slim Docker image of a specific version, update the `RAGFLOW_IMAGE` variable in *
|
||||
*docker/.env** to your desired version. For example, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0-slim`. After
|
||||
*docker/.env** to your desired version. For example, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1-slim`. After
|
||||
making this change, rerun the command above to initiate the download.
|
||||
> - To download the dev version of RAGFlow Docker image *including* embedding models and Python libraries, update the
|
||||
`RAGFLOW_IMAGE` variable in **docker/.env** to `RAGFLOW_IMAGE=infiniflow/ragflow:dev`. After making this change,
|
||||
rerun the command above to initiate the download.
|
||||
> - To download a specific version of RAGFlow Docker image *including* embedding models and Python libraries, update
|
||||
the `RAGFLOW_IMAGE` variable in **docker/.env** to your desired version. For example,
|
||||
`RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0`. After making this change, rerun the command above to initiate the
|
||||
`RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1`. After making this change, rerun the command above to initiate the
|
||||
download.
|
||||
|
||||
> **NOTE:** A RAGFlow Docker image that includes embedding models and Python libraries is approximately 9GB in size
|
||||
|
@ -20,7 +20,7 @@
|
||||
<img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.0">
|
||||
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.1-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.1">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
|
||||
@ -169,14 +169,14 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
|
||||
```
|
||||
|
||||
> - Untuk mengunduh versi tertentu dari image Docker RAGFlow slim, perbarui variabel `RAGFlow_IMAGE` di *
|
||||
*docker/.env** sesuai dengan versi yang diinginkan. Misalnya, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0-slim`.
|
||||
*docker/.env** sesuai dengan versi yang diinginkan. Misalnya, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1-slim`.
|
||||
Setelah mengubah ini, jalankan ulang perintah di atas untuk memulai unduhan.
|
||||
> - Untuk mengunduh versi dev dari image Docker RAGFlow *termasuk* model embedding dan library Python, perbarui
|
||||
variabel `RAGFlow_IMAGE` di **docker/.env** menjadi `RAGFLOW_IMAGE=infiniflow/ragflow:dev`. Setelah mengubah ini,
|
||||
jalankan ulang perintah di atas untuk memulai unduhan.
|
||||
> - Untuk mengunduh versi tertentu dari image Docker RAGFlow *termasuk* model embedding dan library Python, perbarui
|
||||
variabel `RAGFlow_IMAGE` di **docker/.env** sesuai dengan versi yang diinginkan. Misalnya,
|
||||
`RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0`. Setelah mengubah ini, jalankan ulang perintah di atas untuk memulai unduhan.
|
||||
`RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1`. Setelah mengubah ini, jalankan ulang perintah di atas untuk memulai unduhan.
|
||||
|
||||
> **CATATAN:** Image Docker RAGFlow yang mencakup model embedding dan library Python berukuran sekitar 9GB
|
||||
dan mungkin memerlukan waktu lebih lama untuk dimuat.
|
||||
|
@ -20,7 +20,7 @@
|
||||
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.0">
|
||||
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.1-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.1">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
|
||||
@ -148,9 +148,9 @@
|
||||
$ docker compose -f docker-compose.yml up -d
|
||||
```
|
||||
|
||||
> - 特定のバージョンのRAGFlow slim Dockerイメージをダウンロードするには、**docker/.env**内の`RAGFlow_IMAGE`変数を希望のバージョンに更新します。例えば、`RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0`とします。この変更を行った後、上記のコマンドを再実行してダウンロードを開始してください。
|
||||
> - 特定のバージョンのRAGFlow slim Dockerイメージをダウンロードするには、**docker/.env**内の`RAGFlow_IMAGE`変数を希望のバージョンに更新します。例えば、`RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1`とします。この変更を行った後、上記のコマンドを再実行してダウンロードを開始してください。
|
||||
> - RAGFlowの埋め込みモデルとPythonライブラリを含む開発版Dockerイメージをダウンロードするには、**docker/.env**内の`RAGFlow_IMAGE`変数を`RAGFLOW_IMAGE=infiniflow/ragflow:dev`に更新します。この変更を行った後、上記のコマンドを再実行してダウンロードを開始してください。
|
||||
> - 特定のバージョンのRAGFlow Dockerイメージ(埋め込みモデルとPythonライブラリを含む)をダウンロードするには、**docker/.env**内の`RAGFlow_IMAGE`変数を希望のバージョンに更新します。例えば、`RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0`とします。この変更を行った後、上記のコマンドを再実行してダウンロードを開始してください。
|
||||
> - 特定のバージョンのRAGFlow Dockerイメージ(埋め込みモデルとPythonライブラリを含む)をダウンロードするには、**docker/.env**内の`RAGFlow_IMAGE`変数を希望のバージョンに更新します。例えば、`RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1`とします。この変更を行った後、上記のコマンドを再実行してダウンロードを開始してください。
|
||||
|
||||
> **NOTE:** 埋め込みモデルとPythonライブラリを含むRAGFlow Dockerイメージのサイズは約9GBであり、読み込みにかなりの時間がかかる場合があります。
|
||||
|
||||
|
@ -20,7 +20,7 @@
|
||||
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.0">
|
||||
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.1-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.1">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
|
||||
@ -152,9 +152,9 @@
|
||||
$ docker compose -f docker-compose.yml up -d
|
||||
```
|
||||
|
||||
> - 특정 버전의 RAGFlow slim Docker 이미지를 다운로드하려면, **docker/.env**에서 `RAGFlow_IMAGE` 변수를 원하는 버전으로 업데이트하세요. 예를 들어, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0-slim`으로 설정합니다. 이 변경을 완료한 후, 위의 명령을 다시 실행하여 다운로드를 시작하세요.
|
||||
> - 특정 버전의 RAGFlow slim Docker 이미지를 다운로드하려면, **docker/.env**에서 `RAGFlow_IMAGE` 변수를 원하는 버전으로 업데이트하세요. 예를 들어, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1-slim`으로 설정합니다. 이 변경을 완료한 후, 위의 명령을 다시 실행하여 다운로드를 시작하세요.
|
||||
> - RAGFlow의 임베딩 모델과 Python 라이브러리를 포함한 개발 버전 Docker 이미지를 다운로드하려면, **docker/.env**에서 `RAGFlow_IMAGE` 변수를 `RAGFLOW_IMAGE=infiniflow/ragflow:dev`로 업데이트하세요. 이 변경을 완료한 후, 위의 명령을 다시 실행하여 다운로드를 시작하세요.
|
||||
> - 특정 버전의 RAGFlow Docker 이미지를 임베딩 모델과 Python 라이브러리를 포함하여 다운로드하려면, **docker/.env**에서 `RAGFlow_IMAGE` 변수를 원하는 버전으로 업데이트하세요. 예를 들어, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0` 로 설정합니다. 이 변경을 완료한 후, 위의 명령을 다시 실행하여 다운로드를 시작하세요.
|
||||
> - 특정 버전의 RAGFlow Docker 이미지를 임베딩 모델과 Python 라이브러리를 포함하여 다운로드하려면, **docker/.env**에서 `RAGFlow_IMAGE` 변수를 원하는 버전으로 업데이트하세요. 예를 들어, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1` 로 설정합니다. 이 변경을 완료한 후, 위의 명령을 다시 실행하여 다운로드를 시작하세요.
|
||||
|
||||
> **NOTE:** 임베딩 모델과 Python 라이브러리를 포함한 RAGFlow Docker 이미지의 크기는 약 9GB이며, 로드하는 데 상당히 오랜 시간이 걸릴 수 있습니다.
|
||||
|
||||
|
@ -20,7 +20,7 @@
|
||||
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
|
||||
</a>
|
||||
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
|
||||
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.0">
|
||||
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.1-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.1">
|
||||
</a>
|
||||
<a href="https://github.com/infiniflow/ragflow/releases/latest">
|
||||
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
|
||||
@ -149,9 +149,9 @@
|
||||
$ docker compose -f docker-compose.yml up -d
|
||||
```
|
||||
|
||||
> - 如果你想下载并运行特定版本的 RAGFlow slim Docker 镜像,请在 **docker/.env** 文件中找到 `RAGFLOW_IMAGE` 变量,将其改为对应版本。例如 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0-slim`,然后再运行上述命令。
|
||||
> - 如果你想下载并运行特定版本的 RAGFlow slim Docker 镜像,请在 **docker/.env** 文件中找到 `RAGFLOW_IMAGE` 变量,将其改为对应版本。例如 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1-slim`,然后再运行上述命令。
|
||||
> - 如果您想安装内置 embedding 模型和 Python 库的 dev 版本的 Docker 镜像,需要将 **docker/.env** 文件中的 `RAGFLOW_IMAGE` 变量修改为: `RAGFLOW_IMAGE=infiniflow/ragflow:dev`。
|
||||
> - 如果您想安装内置 embedding 模型和 Python 库的指定版本的 RAGFlow Docker 镜像,需要将 **docker/.env** 文件中的 `RAGFLOW_IMAGE` 变量修改为: `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0`。修改后,再运行上面的命令。
|
||||
> - 如果您想安装内置 embedding 模型和 Python 库的指定版本的 RAGFlow Docker 镜像,需要将 **docker/.env** 文件中的 `RAGFLOW_IMAGE` 变量修改为: `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1`。修改后,再运行上面的命令。
|
||||
> **注意:** 安装内置 embedding 模型和 Python 库的指定版本的 RAGFlow Docker 镜像大小约 9 GB,可能需要更长时间下载,请耐心等待。
|
||||
|
||||
4. 服务器启动成功后再次确认服务器状态:
|
||||
|
@ -103,7 +103,7 @@ RAGFlow features visibility and explainability, allowing you to view the chunkin
|
||||
|
||||
2. Hover over each snapshot for a quick view of each chunk.
|
||||
|
||||
3. Double click the chunked texts to add keywords or make *manual* changes where necessary:
|
||||
3. Double-click the chunked texts to add keywords or make *manual* changes where necessary:
|
||||
|
||||

|
||||
|
||||
@ -111,7 +111,7 @@ RAGFlow features visibility and explainability, allowing you to view the chunkin
|
||||
You can add keywords to a file chunk to increase its ranking for queries containing those keywords. This action increases its keyword weight and can improve its position in search list.
|
||||
:::
|
||||
|
||||
4. In Retrieval testing, ask a quick question in **Test text** to double check if your configurations work:
|
||||
4. In Retrieval testing, ask a quick question in **Test text** to double-check if your configurations work:
|
||||
|
||||
_As you can tell from the following, RAGFlow responds with truthful citations._
|
||||
|
||||
@ -128,7 +128,7 @@ RAGFlow uses multiple recall of both full-text search and vector search in its c
|
||||
|
||||
## Search for knowledge base
|
||||
|
||||
As of RAGFlow v0.14.0, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
|
||||
As of RAGFlow v0.14.1, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
|
||||
|
||||

|
||||
|
||||
|
@ -108,7 +108,7 @@ Click on your logo **>** **Model Providers** **>** **System Model Settings** to
|
||||
|
||||
Update your chat model accordingly in **Chat Configuration**:
|
||||
|
||||
> If your local model is an embedding model, update it on the configruation page of your knowledge base.
|
||||
> If your local model is an embedding model, update it on the configuration page of your knowledge base.
|
||||
|
||||
## Deploy a local model using Xinference
|
||||
|
||||
@ -161,7 +161,7 @@ Click on your logo **>** **Model Providers** **>** **System Model Settings** to
|
||||
|
||||
Update your chat model accordingly in **Chat Configuration**:
|
||||
|
||||
> If your local model is an embedding model, update it on the configruation page of your knowledge base.
|
||||
> If your local model is an embedding model, update it on the configuration page of your knowledge base.
|
||||
|
||||
## Deploy a local model using IPEX-LLM
|
||||
|
||||
|
@ -7,7 +7,7 @@ slug: /acquire_ragflow_api_key
|
||||
|
||||
A key is required for the RAGFlow server to authenticate your requests via HTTP or a Python API. This documents provides instructions on obtaining a RAGFlow API key.
|
||||
|
||||
1. Click your avatar on the top right corner of the RAGFlow UI to access the configuration page.
|
||||
1. Click your avatar in the top right corner of the RAGFlow UI to access the configuration page.
|
||||
2. Click **API** to switch to the **API** page.
|
||||
3. Obtain a RAGFlow API key:
|
||||
|
||||
|
@ -81,4 +81,4 @@ RAGFlow's file management allows you to download an uploaded file:
|
||||
|
||||

|
||||
|
||||
> As of RAGFlow v0.14.0, bulk download is not supported, nor can you download an entire folder.
|
||||
> As of RAGFlow v0.14.1, bulk download is not supported, nor can you download an entire folder.
|
||||
|
@ -17,7 +17,7 @@ By default, each RAGFlow user is assigned a single team named after their name.
|
||||
Team members are currently *not* allowed to invite users to your team, and only you, the team owner, is permitted to do so.
|
||||
:::
|
||||
|
||||
To enter the **Team** page, click on your avatar on the top right corner of the page **>** Team:
|
||||
To enter the **Team** page, click on your avatar in the top right corner of the page **>** Team:
|
||||
|
||||

|
||||
|
||||
|
@ -5,7 +5,7 @@ slug: /run_health_check
|
||||
|
||||
# Run health check on RAGFlow's dependencies
|
||||
|
||||
Double check the health status of RAGFlow's dependencies.
|
||||
Double-check the health status of RAGFlow's dependencies.
|
||||
|
||||
The operation of RAGFlow depends on four services:
|
||||
|
||||
@ -16,7 +16,7 @@ The operation of RAGFlow depends on four services:
|
||||
|
||||
If an exception or error occurs related to any of the above services, such as `Exception: Can't connect to ES cluster`, refer to this document to check their health status.
|
||||
|
||||
You can also click you avatar on the top right corner of the page **>** System to view the visualized health status of RAGFlow's core services. The following screenshot shows that all services are 'green' (running healthily). The task executor displays the *cumulative* number of completed and failed document parsing tasks from the past 30 minutes:
|
||||
You can also click you avatar in the top right corner of the page **>** System to view the visualized health status of RAGFlow's core services. The following screenshot shows that all services are 'green' (running healthily). The task executor displays the *cumulative* number of completed and failed document parsing tasks from the past 30 minutes:
|
||||
|
||||

|
||||
|
||||
|
@ -19,7 +19,7 @@ You start an AI conversation by creating an assistant.
|
||||
|
||||
- **Assistant name** is the name of your chat assistant. Each assistant corresponds to a dialogue with a unique combination of knowledge bases, prompts, hybrid search configurations, and large model settings.
|
||||
- **Empty response**:
|
||||
- If you wish to *confine* RAGFlow's answers to your knowledge bases, leave a response here. Then when it doesn't retrieve an answer, it *uniformly* responds with what you set here.
|
||||
- If you wish to *confine* RAGFlow's answers to your knowledge bases, leave a response here. Then, when it doesn't retrieve an answer, it *uniformly* responds with what you set here.
|
||||
- If you wish RAGFlow to *improvise* when it doesn't retrieve an answer from your knowledge bases, leave it blank, which may give rise to hallucinations.
|
||||
- **Show Quote**: This is a key feature of RAGFlow and enabled by default. RAGFlow does not work like a black box. instead, it clearly shows the sources of information that its responses are based on.
|
||||
- Select the corresponding knowledge bases. You can select one or multiple knowledge bases, but ensure that they use the same embedding model, otherwise an error would occur.
|
||||
|
@ -62,16 +62,16 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
|
||||
git clone https://github.com/infiniflow/ragflow.git
|
||||
```
|
||||
|
||||
2. Switch to the latest, officially published release, e.g., `v0.14.0`:
|
||||
2. Switch to the latest, officially published release, e.g., `v0.14.1`:
|
||||
|
||||
```bash
|
||||
git checkout v0.14.0
|
||||
git checkout v0.14.1
|
||||
```
|
||||
|
||||
3. Update **ragflow/docker/.env** as follows:
|
||||
|
||||
```bash
|
||||
RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0
|
||||
RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1
|
||||
```
|
||||
|
||||
4. Update the RAGFlow image and restart RAGFlow:
|
||||
|
@ -32,9 +32,9 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
|
||||
<details>
|
||||
<summary>1. Ensure <code>vm.max_map_count</code> ≥ 262144:</summary>
|
||||
|
||||
`vm.max_map_count`. This value sets the maximum number of memory map areas a process may have. Its default value is 65530. While most applications require fewer than a thousand maps, reducing this value can result in abmornal behaviors, and the system will throw out-of-memory errors when a process reaches the limitation.
|
||||
`vm.max_map_count`. This value sets the maximum number of memory map areas a process may have. Its default value is 65530. While most applications require fewer than a thousand maps, reducing this value can result in abnormal behaviors, and the system will throw out-of-memory errors when a process reaches the limitation.
|
||||
|
||||
RAGFlow v0.14.0 uses Elasticsearch for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
|
||||
RAGFlow v0.14.1 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
|
||||
|
||||
<Tabs
|
||||
defaultValue="linux"
|
||||
@ -184,9 +184,9 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
|
||||
$ docker compose -f docker-compose.yml up -d
|
||||
```
|
||||
|
||||
> - To download a RAGFlow slim Docker image of a specific version, update the `RAGFlOW_IMAGE` variable in **docker/.env** to your desired version. For example, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0-slim`. After making this change, rerun the command above to initiate the download.
|
||||
> - To download a RAGFlow slim Docker image of a specific version, update the `RAGFlOW_IMAGE` variable in **docker/.env** to your desired version. For example, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1-slim`. After making this change, rerun the command above to initiate the download.
|
||||
> - To download the dev version of RAGFlow Docker image *including* embedding models and Python libraries, update the `RAGFlOW_IMAGE` variable in **docker/.env** to `RAGFLOW_IMAGE=infiniflow/ragflow:dev`. After making this change, rerun the command above to initiate the download.
|
||||
> - To download a specific version of RAGFlow Docker image *including* embedding models and Python libraries, update the `RAGFlOW_IMAGE` variable in **docker/.env** to your desired version. For example, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0`. After making this change, rerun the command above to initiate the download.
|
||||
> - To download a specific version of RAGFlow Docker image *including* embedding models and Python libraries, update the `RAGFlOW_IMAGE` variable in **docker/.env** to your desired version. For example, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1`. After making this change, rerun the command above to initiate the download.
|
||||
|
||||
:::tip NOTE
|
||||
A RAGFlow Docker image that includes embedding models and Python libraries is approximately 9GB in size and may take significantly longer time to load.
|
||||
|
Loading…
x
Reference in New Issue
Block a user