Rebuild graph when it's out of time. (#4607)

### What problem does this PR solve?

#4543

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Refactoring
This commit is contained in:
Kevin Hu 2025-01-23 17:26:20 +08:00 committed by GitHub
parent bbc1d02c96
commit 86892959a0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 55 additions and 10 deletions

View File

@ -17,6 +17,7 @@ import logging
import binascii
import os
import json
import json_repair
import re
from collections import defaultdict
from copy import deepcopy
@ -353,7 +354,7 @@ def chat(dialog, messages, stream=True, **kwargs):
generate_result_time_cost = (finish_chat_ts - retrieval_ts) * 1000
prompt = f"{prompt}\n\n - Total: {total_time_cost:.1f}ms\n - Check LLM: {check_llm_time_cost:.1f}ms\n - Create retriever: {create_retriever_time_cost:.1f}ms\n - Bind embedding: {bind_embedding_time_cost:.1f}ms\n - Bind LLM: {bind_llm_time_cost:.1f}ms\n - Tune question: {refine_question_time_cost:.1f}ms\n - Bind reranker: {bind_reranker_time_cost:.1f}ms\n - Generate keyword: {generate_keyword_time_cost:.1f}ms\n - Retrieval: {retrieval_time_cost:.1f}ms\n - Generate answer: {generate_result_time_cost:.1f}ms"
return {"answer": answer, "reference": refs, "prompt": prompt}
return {"answer": answer, "reference": refs, "prompt": re.sub(r"\n", " \n", prompt)}
if stream:
last_ans = ""
@ -795,5 +796,13 @@ Output:
if kwd.find("**ERROR**") >= 0:
raise Exception(kwd)
kwd = re.sub(r".*?\{", "{", kwd)
return json.loads(kwd)
try:
return json_repair.loads(kwd)
except json_repair.JSONDecodeError:
try:
result = kwd.replace(prompt[:-1], '').replace('user', '').replace('model', '').strip()
result = '{' + result.split('{')[1].split('}')[0] + '}'
return json_repair.loads(result)
except Exception as e:
logging.exception(f"JSON parsing error: {result} -> {e}")
raise e

View File

@ -251,11 +251,11 @@ class KGSearch(Dealer):
break
if ents:
ents = "\n-Entities-\n{}".format(pd.DataFrame(ents).to_csv())
ents = "\n---- Entities ----\n{}".format(pd.DataFrame(ents).to_csv())
else:
ents = ""
if relas:
relas = "\n-Relations-\n{}".format(pd.DataFrame(relas).to_csv())
relas = "\n---- Relations ----\n{}".format(pd.DataFrame(relas).to_csv())
else:
relas = ""
@ -296,7 +296,7 @@ class KGSearch(Dealer):
if not txts:
return ""
return "\n-Community Report-\n" + "\n".join(txts)
return "\n---- Community Report ----\n" + "\n".join(txts)
if __name__ == "__main__":

View File

@ -23,6 +23,7 @@ from networkx.readwrite import json_graph
from api import settings
from rag.nlp import search, rag_tokenizer
from rag.utils.doc_store_conn import OrderByExpr
from rag.utils.redis_conn import REDIS_CONN
ErrorHandlerFn = Callable[[BaseException | None, str | None, dict | None], None]
@ -363,7 +364,7 @@ def get_graph(tenant_id, kb_id):
res.field[id]["source_id"]
except Exception:
continue
return None, None
return rebuild_graph(tenant_id, kb_id)
def set_graph(tenant_id, kb_id, graph, docids):
@ -517,3 +518,36 @@ def flat_uniq_list(arr, key):
res.append(a)
return list(set(res))
def rebuild_graph(tenant_id, kb_id):
graph = nx.Graph()
src_ids = []
flds = ["entity_kwd", "entity_type_kwd", "from_entity_kwd", "to_entity_kwd", "weight_int", "knowledge_graph_kwd", "source_id"]
bs = 256
for i in range(0, 10000000, bs):
es_res = settings.docStoreConn.search(flds, [],
{"kb_id": kb_id, "knowledge_graph_kwd": ["entity", "relation"]},
[],
OrderByExpr(),
i, bs, search.index_name(tenant_id), [kb_id]
)
tot = settings.docStoreConn.getTotal(es_res)
if tot == 0:
return None, None
es_res = settings.docStoreConn.getFields(es_res, flds)
for id, d in es_res.items():
src_ids.extend(d.get("source_id", []))
if d["knowledge_graph_kwd"] == "entity":
graph.add_node(d["entity_kwd"], entity_type=d["entity_type_kwd"])
else:
graph.add_edge(
d["from_entity_kwd"],
d["to_entity_kwd"],
weight=int(d["weight_int"])
)
if len(es_res.keys()) < 128:
return graph, list(set(src_ids))
return graph, list(set(src_ids))

View File

@ -483,4 +483,4 @@ class Dealer:
cnt = np.sum([c for _, c in aggs])
tag_fea = sorted([(a, round(0.1*(c + 1) / (cnt + S) / (all_tags.get(a, 0.0001)))) for a, c in aggs],
key=lambda x: x[1] * -1)[:topn_tags]
return {a: c for a, c in tag_fea if c > 0}
return {a: max(1, c) for a, c in tag_fea}

View File

@ -327,8 +327,10 @@ def build_chunks(task, progress_callback):
random.choices(examples, k=2) if len(examples)>2 else examples,
topn=topn_tags)
if cached:
set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, all_tags, {"topn": topn_tags})
d[TAG_FLD] = json.loads(cached)
cached = json.dumps(cached)
if cached:
set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, all_tags, {"topn": topn_tags})
d[TAG_FLD] = json.loads(cached)
progress_callback(msg="Tagging completed in {:.2f}s".format(timer() - st))