SDK for Assistant (#2266)

### What problem does this PR solve?

SDK for Assistant
#1102 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: Feiue <10215101452@stu.ecun.edu.cn>
This commit is contained in:
LiuHua 2024-09-05 15:08:02 +08:00 committed by GitHub
parent 445576ec88
commit 878dca26bb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 483 additions and 2 deletions

293
api/apps/sdk/assistant.py Normal file
View File

@ -0,0 +1,293 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from flask import request
from api.db import StatusEnum
from api.db.services.dialog_service import DialogService
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.user_service import TenantService
from api.settings import RetCode
from api.utils import get_uuid
from api.utils.api_utils import get_data_error_result, token_required
from api.utils.api_utils import get_json_result
@manager.route('/save', methods=['POST'])
@token_required
def save(tenant_id):
req = request.json
id = req.get("id")
# dataset
if req.get("knowledgebases") == []:
return get_data_error_result(retmsg="knowledgebases can not be empty list")
kb_list = []
if req.get("knowledgebases"):
for kb in req.get("knowledgebases"):
if not kb["id"]:
return get_data_error_result(retmsg="knowledgebase needs id")
if not KnowledgebaseService.query(id=kb["id"], tenant_id=tenant_id):
return get_data_error_result(retmsg="you do not own the knowledgebase")
if not DocumentService.query(kb_id=kb["id"]):
return get_data_error_result(retmsg="There is a invalid knowledgebase")
kb_list.append(kb["id"])
req["kb_ids"] = kb_list
# llm
llm = req.get("llm")
if llm:
if "model_name" in llm:
req["llm_id"] = llm.pop("model_name")
req["llm_setting"] = req.pop("llm")
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
return get_data_error_result(retmsg="Tenant not found!")
# prompt
prompt = req.get("prompt")
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
if prompt:
for new_key, old_key in key_mapping.items():
if old_key in prompt:
prompt[new_key] = prompt.pop(old_key)
for key in key_list:
if key in prompt:
req[key] = prompt.pop(key)
req["prompt_config"] = req.pop("prompt")
# create
if not id:
# dataset
if not kb_list:
return get_data_error_result(retmsg="knowledgebase is required!")
# init
req["id"] = get_uuid()
req["description"] = req.get("description", "A helpful Assistant")
req["icon"] = req.get("avatar", "")
req["top_n"] = req.get("top_n", 6)
req["top_k"] = req.get("top_k", 1024)
req["rerank_id"] = req.get("rerank_id", "")
req["llm_id"] = req.get("llm_id", tenant.llm_id)
if not req.get("name"):
return get_data_error_result(retmsg="name is required.")
if DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_data_error_result(retmsg="Duplicated assistant name in creating dataset.")
# tenant_id
if req.get("tenant_id"):
return get_data_error_result(retmsg="tenant_id must not be provided.")
req["tenant_id"] = tenant_id
# prompt more parameter
default_prompt = {
"system": """你是一个智能助手,请总结知识库的内容来回答问题,请列举知识库中的数据详细回答。当所有知识库内容都与问题无关时,你的回答必须包括“知识库中未找到您要的答案!”这句话。回答需要考虑聊天历史。
以下是知识库
{knowledge}
以上是知识库""",
"prologue": "您好我是您的助手小樱长得可爱又善良can I help you?",
"parameters": [
{"key": "knowledge", "optional": False}
],
"empty_response": "Sorry! 知识库中未找到相关内容!"
}
key_list_2 = ["system", "prologue", "parameters", "empty_response"]
if "prompt_config" not in req:
req['prompt_config'] = {}
for key in key_list_2:
temp = req['prompt_config'].get(key)
if not temp:
req['prompt_config'][key] = default_prompt[key]
for p in req['prompt_config']["parameters"]:
if p["optional"]:
continue
if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0:
return get_data_error_result(
retmsg="Parameter '{}' is not used".format(p["key"]))
# save
if not DialogService.save(**req):
return get_data_error_result(retmsg="Fail to new an assistant!")
# response
e, res = DialogService.get_by_id(req["id"])
if not e:
return get_data_error_result(retmsg="Fail to new an assistant!")
res = res.to_json()
renamed_dict = {}
for key, value in res["prompt_config"].items():
new_key = key_mapping.get(key, key)
renamed_dict[new_key] = value
res["prompt"] = renamed_dict
del res["prompt_config"]
new_dict = {"similarity_threshold": res["similarity_threshold"],
"keywords_similarity_weight": res["vector_similarity_weight"],
"top_n": res["top_n"],
"rerank_model": res['rerank_id']}
res["prompt"].update(new_dict)
for key in key_list:
del res[key]
res["llm"] = res.pop("llm_setting")
res["llm"]["model_name"] = res.pop("llm_id")
del res["kb_ids"]
res["knowledgebases"] = req["knowledgebases"]
res["avatar"] = res.pop("icon")
return get_json_result(data=res)
else:
# authorization
if not DialogService.query(tenant_id=tenant_id, id=req["id"], status=StatusEnum.VALID.value):
return get_json_result(data=False, retmsg='You do not own the assistant', retcode=RetCode.OPERATING_ERROR)
# prompt
e, res = DialogService.get_by_id(req["id"])
res = res.to_json()
if "name" in req:
if not req.get("name"):
return get_data_error_result(retmsg="name is not empty.")
if req["name"].lower() != res["name"].lower() \
and len(DialogService.query(name=req["name"], tenant_id=tenant_id,status=StatusEnum.VALID.value)) > 0:
return get_data_error_result(retmsg="Duplicated knowledgebase name in updating dataset.")
if "prompt_config" in req:
res["prompt_config"].update(req["prompt_config"])
for p in res["prompt_config"]["parameters"]:
if p["optional"]:
continue
if res["prompt_config"]["system"].find("{%s}" % p["key"]) < 0:
return get_data_error_result(retmsg="Parameter '{}' is not used".format(p["key"]))
if "llm_setting" in req:
res["llm_setting"].update(req["llm_setting"])
req["prompt_config"] = res["prompt_config"]
req["llm_setting"] = res["llm_setting"]
# avatar
if "avatar" in req:
req["icon"] = req.pop("avatar")
assistant_id = req.pop("id")
if "knowledgebases" in req:
req.pop("knowledgebases")
if not DialogService.update_by_id(assistant_id, req):
return get_data_error_result(retmsg="Assistant not found!")
return get_json_result(data=True)
@manager.route('/delete', methods=['DELETE'])
@token_required
def delete(tenant_id):
req = request.args
if "id" not in req:
return get_data_error_result(retmsg="id is required")
id = req['id']
if not DialogService.query(tenant_id=tenant_id, id=id,status=StatusEnum.VALID.value):
return get_json_result(data=False, retmsg='you do not own the assistant.', retcode=RetCode.OPERATING_ERROR)
temp_dict = {"status": StatusEnum.INVALID.value}
DialogService.update_by_id(req["id"], temp_dict)
return get_json_result(data=True)
@manager.route('/get', methods=['GET'])
@token_required
def get(tenant_id):
req = request.args
if "id" in req:
id = req["id"]
ass = DialogService.query(tenant_id=tenant_id, id=id,status=StatusEnum.VALID.value)
if not ass:
return get_json_result(data=False, retmsg='You do not own the assistant.', retcode=RetCode.OPERATING_ERROR)
if "name" in req:
name = req["name"]
if ass[0].name != name:
return get_json_result(data=False, retmsg='name does not match id.', retcode=RetCode.OPERATING_ERROR)
res=ass[0].to_json()
else:
if "name" in req:
name = req["name"]
ass = DialogService.query(name=name, tenant_id=tenant_id,status=StatusEnum.VALID.value)
if not ass:
return get_json_result(data=False, retmsg='You do not own the dataset.',retcode=RetCode.OPERATING_ERROR)
res=ass[0].to_json()
else:
return get_data_error_result(retmsg="At least one of `id` or `name` must be provided.")
renamed_dict = {}
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
for key, value in res["prompt_config"].items():
new_key = key_mapping.get(key, key)
renamed_dict[new_key] = value
res["prompt"] = renamed_dict
del res["prompt_config"]
new_dict = {"similarity_threshold": res["similarity_threshold"],
"keywords_similarity_weight": res["vector_similarity_weight"],
"top_n": res["top_n"],
"rerank_model": res['rerank_id']}
res["prompt"].update(new_dict)
for key in key_list:
del res[key]
res["llm"] = res.pop("llm_setting")
res["llm"]["model_name"] = res.pop("llm_id")
kb_list = []
for kb_id in res["kb_ids"]:
kb = KnowledgebaseService.query(id=kb_id)
kb_list.append(kb[0].to_json())
del res["kb_ids"]
res["knowledgebases"] = kb_list
res["avatar"] = res.pop("icon")
return get_json_result(data=res)
@manager.route('/list', methods=['GET'])
@token_required
def list_assistants(tenant_id):
assts = DialogService.query(
tenant_id=tenant_id,
status=StatusEnum.VALID.value,
reverse=True,
order_by=DialogService.model.create_time)
assts = [d.to_dict() for d in assts]
list_assts=[]
renamed_dict = {}
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
for res in assts:
for key, value in res["prompt_config"].items():
new_key = key_mapping.get(key, key)
renamed_dict[new_key] = value
res["prompt"] = renamed_dict
del res["prompt_config"]
new_dict = {"similarity_threshold": res["similarity_threshold"],
"keywords_similarity_weight": res["vector_similarity_weight"],
"top_n": res["top_n"],
"rerank_model": res['rerank_id']}
res["prompt"].update(new_dict)
for key in key_list:
del res[key]
res["llm"] = res.pop("llm_setting")
res["llm"]["model_name"] = res.pop("llm_id")
kb_list = []
for kb_id in res["kb_ids"]:
kb = KnowledgebaseService.query(id=kb_id)
kb_list.append(kb[0].to_json())
del res["kb_ids"]
res["knowledgebases"] = kb_list
res["avatar"] = res.pop("icon")
list_assts.append(res)
return get_json_result(data=list_assts)

View File

@ -3,4 +3,5 @@ import importlib.metadata
__version__ = importlib.metadata.version("ragflow")
from .ragflow import RAGFlow
from .modules.dataset import DataSet
from .modules.dataset import DataSet
from .modules.chat_assistant import Assistant

View File

@ -0,0 +1,56 @@
from .base import Base
class Assistant(Base):
def __init__(self, rag, res_dict):
self.id=""
self.name = "assistant"
self.avatar = "path/to/avatar"
self.knowledgebases = ["kb1"]
self.llm = Assistant.LLM(rag, {})
self.prompt = Assistant.Prompt(rag, {})
super().__init__(rag, res_dict)
class LLM(Base):
def __init__(self, rag, res_dict):
self.model_name = "deepseek-chat"
self.temperature = 0.1
self.top_p = 0.3
self.presence_penalty = 0.4
self.frequency_penalty = 0.7
self.max_tokens = 512
super().__init__(rag, res_dict)
class Prompt(Base):
def __init__(self, rag, res_dict):
self.similarity_threshold = 0.2
self.keywords_similarity_weight = 0.7
self.top_n = 8
self.variables = [{"key": "knowledge", "optional": True}]
self.rerank_model = None
self.empty_response = None
self.opener = "Hi! I'm your assistant, what can I do for you?"
self.show_quote = True
self.prompt = (
"You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. "
"Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, "
"your answer must include the sentence 'The answer you are looking for is not found in the knowledge base!' "
"Answers need to consider chat history.\nHere is the knowledge base:\n{knowledge}\nThe above is the knowledge base."
)
super().__init__(rag, res_dict)
def save(self) -> bool:
res = self.post('/assistant/save',
{"id": self.id, "name": self.name, "avatar": self.avatar, "knowledgebases":self.knowledgebases,
"llm":self.llm.to_json(),"prompt":self.prompt.to_json()
})
res = res.json()
if res.get("retmsg") == "success": return True
raise Exception(res["retmsg"])
def delete(self) -> bool:
res = self.rm('/assistant/delete',
{"id": self.id})
res = res.json()
if res.get("retmsg") == "success": return True
raise Exception(res["retmsg"])

View File

@ -17,6 +17,8 @@ from typing import List
import requests
from .modules.chat_assistant import Assistant
from .modules.dataset import DataSet
@ -78,3 +80,66 @@ class RAGFlow:
if res.get("retmsg") == "success":
return DataSet(self, res['data'])
raise Exception(res["retmsg"])
def create_assistant(self, name: str = "assistant", avatar: str = "path", knowledgebases: List[DataSet] = [],
llm: Assistant.LLM = None, prompt: Assistant.Prompt = None) -> Assistant:
datasets = []
for dataset in knowledgebases:
datasets.append(dataset.to_json())
if llm is None:
llm = Assistant.LLM(self, {"model_name": "deepseek-chat",
"temperature": 0.1,
"top_p": 0.3,
"presence_penalty": 0.4,
"frequency_penalty": 0.7,
"max_tokens": 512, })
if prompt is None:
prompt = Assistant.Prompt(self, {"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.7,
"top_n": 8,
"variables": [{
"key": "knowledge",
"optional": True
}], "rerank_model": "",
"empty_response": None,
"opener": None,
"show_quote": True,
"prompt": None})
if prompt.opener is None:
prompt.opener = "Hi! I'm your assistant, what can I do for you?"
if prompt.prompt is None:
prompt.prompt = (
"You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. "
"Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, "
"your answer must include the sentence 'The answer you are looking for is not found in the knowledge base!' "
"Answers need to consider chat history.\nHere is the knowledge base:\n{knowledge}\nThe above is the knowledge base."
)
temp_dict = {"name": name,
"avatar": avatar,
"knowledgebases": datasets,
"llm": llm.to_json(),
"prompt": prompt.to_json()}
res = self.post("/assistant/save", temp_dict)
res = res.json()
if res.get("retmsg") == "success":
return Assistant(self, res["data"])
raise Exception(res["retmsg"])
def get_assistant(self, id: str = None, name: str = None) -> Assistant:
res = self.get("/assistant/get", {"id": id, "name": name})
res = res.json()
if res.get("retmsg") == "success":
return Assistant(self, res['data'])
raise Exception(res["retmsg"])
def list_assistants(self) -> List[Assistant]:
res = self.get("/assistant/list")
res = res.json()
result_list = []
if res.get("retmsg") == "success":
for data in res['data']:
result_list.append(Assistant(self, data))
return result_list
raise Exception(res["retmsg"])

View File

@ -1,4 +1,4 @@
API_KEY = 'ragflow-k0N2I1MzQwNjNhMzExZWY5ODg1MDI0Mm'
API_KEY = 'ragflow-k0YzUxMGY4NjY5YTExZWY5MjI5MDI0Mm'
HOST_ADDRESS = 'http://127.0.0.1:9380'

View File

@ -0,0 +1,66 @@
from ragflow import RAGFlow, Assistant
from common import API_KEY, HOST_ADDRESS
from test_sdkbase import TestSdk
class TestAssistant(TestSdk):
def test_create_assistant_with_success(self):
"""
Test creating an assistant with success
"""
rag = RAGFlow(API_KEY, HOST_ADDRESS)
kb = rag.get_dataset(name="God")
assistant = rag.create_assistant("God",knowledgebases=[kb])
if isinstance(assistant, Assistant):
assert assistant.name == "God", "Name does not match."
else:
assert False, f"Failed to create assistant, error: {assistant}"
def test_update_assistant_with_success(self):
"""
Test updating an assistant with success.
"""
rag = RAGFlow(API_KEY, HOST_ADDRESS)
kb = rag.get_dataset(name="God")
assistant = rag.create_assistant("ABC",knowledgebases=[kb])
if isinstance(assistant, Assistant):
assert assistant.name == "ABC", "Name does not match."
assistant.name = 'DEF'
res = assistant.save()
assert res is True, f"Failed to update assistant, error: {res}"
else:
assert False, f"Failed to create assistant, error: {assistant}"
def test_delete_assistant_with_success(self):
"""
Test deleting an assistant with success
"""
rag = RAGFlow(API_KEY, HOST_ADDRESS)
kb = rag.get_dataset(name="God")
assistant = rag.create_assistant("MA",knowledgebases=[kb])
if isinstance(assistant, Assistant):
assert assistant.name == "MA", "Name does not match."
res = assistant.delete()
assert res is True, f"Failed to delete assistant, error: {res}"
else:
assert False, f"Failed to create assistant, error: {assistant}"
def test_list_assistants_with_success(self):
"""
Test listing assistants with success
"""
rag = RAGFlow(API_KEY, HOST_ADDRESS)
list_assistants = rag.list_assistants()
assert len(list_assistants) > 0, "Do not exist any assistant"
for assistant in list_assistants:
assert isinstance(assistant, Assistant), "Existence type is not assistant."
def test_get_detail_assistant_with_success(self):
"""
Test getting an assistant's detail with success
"""
rag = RAGFlow(API_KEY, HOST_ADDRESS)
assistant = rag.get_assistant(name="God")
assert isinstance(assistant, Assistant), f"Failed to get assistant, error: {assistant}."
assert assistant.name == "God", "Name does not match"