mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-10 03:09:00 +08:00
SDK for Assistant (#2266)
### What problem does this PR solve? SDK for Assistant #1102 ### Type of change - [x] New Feature (non-breaking change which adds functionality) Co-authored-by: Feiue <10215101452@stu.ecun.edu.cn>
This commit is contained in:
parent
445576ec88
commit
878dca26bb
293
api/apps/sdk/assistant.py
Normal file
293
api/apps/sdk/assistant.py
Normal file
@ -0,0 +1,293 @@
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
from flask import request
|
||||
|
||||
from api.db import StatusEnum
|
||||
from api.db.services.dialog_service import DialogService
|
||||
from api.db.services.document_service import DocumentService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.user_service import TenantService
|
||||
from api.settings import RetCode
|
||||
from api.utils import get_uuid
|
||||
from api.utils.api_utils import get_data_error_result, token_required
|
||||
from api.utils.api_utils import get_json_result
|
||||
|
||||
|
||||
@manager.route('/save', methods=['POST'])
|
||||
@token_required
|
||||
def save(tenant_id):
|
||||
req = request.json
|
||||
id = req.get("id")
|
||||
# dataset
|
||||
if req.get("knowledgebases") == []:
|
||||
return get_data_error_result(retmsg="knowledgebases can not be empty list")
|
||||
kb_list = []
|
||||
if req.get("knowledgebases"):
|
||||
for kb in req.get("knowledgebases"):
|
||||
if not kb["id"]:
|
||||
return get_data_error_result(retmsg="knowledgebase needs id")
|
||||
if not KnowledgebaseService.query(id=kb["id"], tenant_id=tenant_id):
|
||||
return get_data_error_result(retmsg="you do not own the knowledgebase")
|
||||
if not DocumentService.query(kb_id=kb["id"]):
|
||||
return get_data_error_result(retmsg="There is a invalid knowledgebase")
|
||||
kb_list.append(kb["id"])
|
||||
req["kb_ids"] = kb_list
|
||||
# llm
|
||||
llm = req.get("llm")
|
||||
if llm:
|
||||
if "model_name" in llm:
|
||||
req["llm_id"] = llm.pop("model_name")
|
||||
req["llm_setting"] = req.pop("llm")
|
||||
e, tenant = TenantService.get_by_id(tenant_id)
|
||||
if not e:
|
||||
return get_data_error_result(retmsg="Tenant not found!")
|
||||
# prompt
|
||||
prompt = req.get("prompt")
|
||||
key_mapping = {"parameters": "variables",
|
||||
"prologue": "opener",
|
||||
"quote": "show_quote",
|
||||
"system": "prompt",
|
||||
"rerank_id": "rerank_model",
|
||||
"vector_similarity_weight": "keywords_similarity_weight"}
|
||||
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
|
||||
if prompt:
|
||||
for new_key, old_key in key_mapping.items():
|
||||
if old_key in prompt:
|
||||
prompt[new_key] = prompt.pop(old_key)
|
||||
for key in key_list:
|
||||
if key in prompt:
|
||||
req[key] = prompt.pop(key)
|
||||
req["prompt_config"] = req.pop("prompt")
|
||||
# create
|
||||
if not id:
|
||||
# dataset
|
||||
if not kb_list:
|
||||
return get_data_error_result(retmsg="knowledgebase is required!")
|
||||
# init
|
||||
req["id"] = get_uuid()
|
||||
req["description"] = req.get("description", "A helpful Assistant")
|
||||
req["icon"] = req.get("avatar", "")
|
||||
req["top_n"] = req.get("top_n", 6)
|
||||
req["top_k"] = req.get("top_k", 1024)
|
||||
req["rerank_id"] = req.get("rerank_id", "")
|
||||
req["llm_id"] = req.get("llm_id", tenant.llm_id)
|
||||
if not req.get("name"):
|
||||
return get_data_error_result(retmsg="name is required.")
|
||||
if DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
|
||||
return get_data_error_result(retmsg="Duplicated assistant name in creating dataset.")
|
||||
# tenant_id
|
||||
if req.get("tenant_id"):
|
||||
return get_data_error_result(retmsg="tenant_id must not be provided.")
|
||||
req["tenant_id"] = tenant_id
|
||||
# prompt more parameter
|
||||
default_prompt = {
|
||||
"system": """你是一个智能助手,请总结知识库的内容来回答问题,请列举知识库中的数据详细回答。当所有知识库内容都与问题无关时,你的回答必须包括“知识库中未找到您要的答案!”这句话。回答需要考虑聊天历史。
|
||||
以下是知识库:
|
||||
{knowledge}
|
||||
以上是知识库。""",
|
||||
"prologue": "您好,我是您的助手小樱,长得可爱又善良,can I help you?",
|
||||
"parameters": [
|
||||
{"key": "knowledge", "optional": False}
|
||||
],
|
||||
"empty_response": "Sorry! 知识库中未找到相关内容!"
|
||||
}
|
||||
key_list_2 = ["system", "prologue", "parameters", "empty_response"]
|
||||
if "prompt_config" not in req:
|
||||
req['prompt_config'] = {}
|
||||
for key in key_list_2:
|
||||
temp = req['prompt_config'].get(key)
|
||||
if not temp:
|
||||
req['prompt_config'][key] = default_prompt[key]
|
||||
for p in req['prompt_config']["parameters"]:
|
||||
if p["optional"]:
|
||||
continue
|
||||
if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0:
|
||||
return get_data_error_result(
|
||||
retmsg="Parameter '{}' is not used".format(p["key"]))
|
||||
# save
|
||||
if not DialogService.save(**req):
|
||||
return get_data_error_result(retmsg="Fail to new an assistant!")
|
||||
# response
|
||||
e, res = DialogService.get_by_id(req["id"])
|
||||
if not e:
|
||||
return get_data_error_result(retmsg="Fail to new an assistant!")
|
||||
res = res.to_json()
|
||||
renamed_dict = {}
|
||||
for key, value in res["prompt_config"].items():
|
||||
new_key = key_mapping.get(key, key)
|
||||
renamed_dict[new_key] = value
|
||||
res["prompt"] = renamed_dict
|
||||
del res["prompt_config"]
|
||||
new_dict = {"similarity_threshold": res["similarity_threshold"],
|
||||
"keywords_similarity_weight": res["vector_similarity_weight"],
|
||||
"top_n": res["top_n"],
|
||||
"rerank_model": res['rerank_id']}
|
||||
res["prompt"].update(new_dict)
|
||||
for key in key_list:
|
||||
del res[key]
|
||||
res["llm"] = res.pop("llm_setting")
|
||||
res["llm"]["model_name"] = res.pop("llm_id")
|
||||
del res["kb_ids"]
|
||||
res["knowledgebases"] = req["knowledgebases"]
|
||||
res["avatar"] = res.pop("icon")
|
||||
return get_json_result(data=res)
|
||||
else:
|
||||
# authorization
|
||||
if not DialogService.query(tenant_id=tenant_id, id=req["id"], status=StatusEnum.VALID.value):
|
||||
return get_json_result(data=False, retmsg='You do not own the assistant', retcode=RetCode.OPERATING_ERROR)
|
||||
# prompt
|
||||
e, res = DialogService.get_by_id(req["id"])
|
||||
res = res.to_json()
|
||||
if "name" in req:
|
||||
if not req.get("name"):
|
||||
return get_data_error_result(retmsg="name is not empty.")
|
||||
if req["name"].lower() != res["name"].lower() \
|
||||
and len(DialogService.query(name=req["name"], tenant_id=tenant_id,status=StatusEnum.VALID.value)) > 0:
|
||||
return get_data_error_result(retmsg="Duplicated knowledgebase name in updating dataset.")
|
||||
if "prompt_config" in req:
|
||||
res["prompt_config"].update(req["prompt_config"])
|
||||
for p in res["prompt_config"]["parameters"]:
|
||||
if p["optional"]:
|
||||
continue
|
||||
if res["prompt_config"]["system"].find("{%s}" % p["key"]) < 0:
|
||||
return get_data_error_result(retmsg="Parameter '{}' is not used".format(p["key"]))
|
||||
if "llm_setting" in req:
|
||||
res["llm_setting"].update(req["llm_setting"])
|
||||
req["prompt_config"] = res["prompt_config"]
|
||||
req["llm_setting"] = res["llm_setting"]
|
||||
# avatar
|
||||
if "avatar" in req:
|
||||
req["icon"] = req.pop("avatar")
|
||||
assistant_id = req.pop("id")
|
||||
if "knowledgebases" in req:
|
||||
req.pop("knowledgebases")
|
||||
if not DialogService.update_by_id(assistant_id, req):
|
||||
return get_data_error_result(retmsg="Assistant not found!")
|
||||
return get_json_result(data=True)
|
||||
|
||||
|
||||
@manager.route('/delete', methods=['DELETE'])
|
||||
@token_required
|
||||
def delete(tenant_id):
|
||||
req = request.args
|
||||
if "id" not in req:
|
||||
return get_data_error_result(retmsg="id is required")
|
||||
id = req['id']
|
||||
if not DialogService.query(tenant_id=tenant_id, id=id,status=StatusEnum.VALID.value):
|
||||
return get_json_result(data=False, retmsg='you do not own the assistant.', retcode=RetCode.OPERATING_ERROR)
|
||||
|
||||
temp_dict = {"status": StatusEnum.INVALID.value}
|
||||
DialogService.update_by_id(req["id"], temp_dict)
|
||||
return get_json_result(data=True)
|
||||
|
||||
|
||||
@manager.route('/get', methods=['GET'])
|
||||
@token_required
|
||||
def get(tenant_id):
|
||||
req = request.args
|
||||
if "id" in req:
|
||||
id = req["id"]
|
||||
ass = DialogService.query(tenant_id=tenant_id, id=id,status=StatusEnum.VALID.value)
|
||||
if not ass:
|
||||
return get_json_result(data=False, retmsg='You do not own the assistant.', retcode=RetCode.OPERATING_ERROR)
|
||||
if "name" in req:
|
||||
name = req["name"]
|
||||
if ass[0].name != name:
|
||||
return get_json_result(data=False, retmsg='name does not match id.', retcode=RetCode.OPERATING_ERROR)
|
||||
res=ass[0].to_json()
|
||||
else:
|
||||
if "name" in req:
|
||||
name = req["name"]
|
||||
ass = DialogService.query(name=name, tenant_id=tenant_id,status=StatusEnum.VALID.value)
|
||||
if not ass:
|
||||
return get_json_result(data=False, retmsg='You do not own the dataset.',retcode=RetCode.OPERATING_ERROR)
|
||||
res=ass[0].to_json()
|
||||
else:
|
||||
return get_data_error_result(retmsg="At least one of `id` or `name` must be provided.")
|
||||
renamed_dict = {}
|
||||
key_mapping = {"parameters": "variables",
|
||||
"prologue": "opener",
|
||||
"quote": "show_quote",
|
||||
"system": "prompt",
|
||||
"rerank_id": "rerank_model",
|
||||
"vector_similarity_weight": "keywords_similarity_weight"}
|
||||
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
|
||||
for key, value in res["prompt_config"].items():
|
||||
new_key = key_mapping.get(key, key)
|
||||
renamed_dict[new_key] = value
|
||||
res["prompt"] = renamed_dict
|
||||
del res["prompt_config"]
|
||||
new_dict = {"similarity_threshold": res["similarity_threshold"],
|
||||
"keywords_similarity_weight": res["vector_similarity_weight"],
|
||||
"top_n": res["top_n"],
|
||||
"rerank_model": res['rerank_id']}
|
||||
res["prompt"].update(new_dict)
|
||||
for key in key_list:
|
||||
del res[key]
|
||||
res["llm"] = res.pop("llm_setting")
|
||||
res["llm"]["model_name"] = res.pop("llm_id")
|
||||
kb_list = []
|
||||
for kb_id in res["kb_ids"]:
|
||||
kb = KnowledgebaseService.query(id=kb_id)
|
||||
kb_list.append(kb[0].to_json())
|
||||
del res["kb_ids"]
|
||||
res["knowledgebases"] = kb_list
|
||||
res["avatar"] = res.pop("icon")
|
||||
return get_json_result(data=res)
|
||||
|
||||
|
||||
@manager.route('/list', methods=['GET'])
|
||||
@token_required
|
||||
def list_assistants(tenant_id):
|
||||
assts = DialogService.query(
|
||||
tenant_id=tenant_id,
|
||||
status=StatusEnum.VALID.value,
|
||||
reverse=True,
|
||||
order_by=DialogService.model.create_time)
|
||||
assts = [d.to_dict() for d in assts]
|
||||
list_assts=[]
|
||||
renamed_dict = {}
|
||||
key_mapping = {"parameters": "variables",
|
||||
"prologue": "opener",
|
||||
"quote": "show_quote",
|
||||
"system": "prompt",
|
||||
"rerank_id": "rerank_model",
|
||||
"vector_similarity_weight": "keywords_similarity_weight"}
|
||||
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
|
||||
for res in assts:
|
||||
for key, value in res["prompt_config"].items():
|
||||
new_key = key_mapping.get(key, key)
|
||||
renamed_dict[new_key] = value
|
||||
res["prompt"] = renamed_dict
|
||||
del res["prompt_config"]
|
||||
new_dict = {"similarity_threshold": res["similarity_threshold"],
|
||||
"keywords_similarity_weight": res["vector_similarity_weight"],
|
||||
"top_n": res["top_n"],
|
||||
"rerank_model": res['rerank_id']}
|
||||
res["prompt"].update(new_dict)
|
||||
for key in key_list:
|
||||
del res[key]
|
||||
res["llm"] = res.pop("llm_setting")
|
||||
res["llm"]["model_name"] = res.pop("llm_id")
|
||||
kb_list = []
|
||||
for kb_id in res["kb_ids"]:
|
||||
kb = KnowledgebaseService.query(id=kb_id)
|
||||
kb_list.append(kb[0].to_json())
|
||||
del res["kb_ids"]
|
||||
res["knowledgebases"] = kb_list
|
||||
res["avatar"] = res.pop("icon")
|
||||
list_assts.append(res)
|
||||
return get_json_result(data=list_assts)
|
@ -3,4 +3,5 @@ import importlib.metadata
|
||||
__version__ = importlib.metadata.version("ragflow")
|
||||
|
||||
from .ragflow import RAGFlow
|
||||
from .modules.dataset import DataSet
|
||||
from .modules.dataset import DataSet
|
||||
from .modules.chat_assistant import Assistant
|
56
sdk/python/ragflow/modules/chat_assistant.py
Normal file
56
sdk/python/ragflow/modules/chat_assistant.py
Normal file
@ -0,0 +1,56 @@
|
||||
from .base import Base
|
||||
|
||||
|
||||
class Assistant(Base):
|
||||
def __init__(self, rag, res_dict):
|
||||
self.id=""
|
||||
self.name = "assistant"
|
||||
self.avatar = "path/to/avatar"
|
||||
self.knowledgebases = ["kb1"]
|
||||
self.llm = Assistant.LLM(rag, {})
|
||||
self.prompt = Assistant.Prompt(rag, {})
|
||||
super().__init__(rag, res_dict)
|
||||
|
||||
class LLM(Base):
|
||||
def __init__(self, rag, res_dict):
|
||||
self.model_name = "deepseek-chat"
|
||||
self.temperature = 0.1
|
||||
self.top_p = 0.3
|
||||
self.presence_penalty = 0.4
|
||||
self.frequency_penalty = 0.7
|
||||
self.max_tokens = 512
|
||||
super().__init__(rag, res_dict)
|
||||
|
||||
class Prompt(Base):
|
||||
def __init__(self, rag, res_dict):
|
||||
self.similarity_threshold = 0.2
|
||||
self.keywords_similarity_weight = 0.7
|
||||
self.top_n = 8
|
||||
self.variables = [{"key": "knowledge", "optional": True}]
|
||||
self.rerank_model = None
|
||||
self.empty_response = None
|
||||
self.opener = "Hi! I'm your assistant, what can I do for you?"
|
||||
self.show_quote = True
|
||||
self.prompt = (
|
||||
"You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. "
|
||||
"Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, "
|
||||
"your answer must include the sentence 'The answer you are looking for is not found in the knowledge base!' "
|
||||
"Answers need to consider chat history.\nHere is the knowledge base:\n{knowledge}\nThe above is the knowledge base."
|
||||
)
|
||||
super().__init__(rag, res_dict)
|
||||
|
||||
def save(self) -> bool:
|
||||
res = self.post('/assistant/save',
|
||||
{"id": self.id, "name": self.name, "avatar": self.avatar, "knowledgebases":self.knowledgebases,
|
||||
"llm":self.llm.to_json(),"prompt":self.prompt.to_json()
|
||||
})
|
||||
res = res.json()
|
||||
if res.get("retmsg") == "success": return True
|
||||
raise Exception(res["retmsg"])
|
||||
|
||||
def delete(self) -> bool:
|
||||
res = self.rm('/assistant/delete',
|
||||
{"id": self.id})
|
||||
res = res.json()
|
||||
if res.get("retmsg") == "success": return True
|
||||
raise Exception(res["retmsg"])
|
@ -17,6 +17,8 @@ from typing import List
|
||||
|
||||
import requests
|
||||
|
||||
|
||||
from .modules.chat_assistant import Assistant
|
||||
from .modules.dataset import DataSet
|
||||
|
||||
|
||||
@ -78,3 +80,66 @@ class RAGFlow:
|
||||
if res.get("retmsg") == "success":
|
||||
return DataSet(self, res['data'])
|
||||
raise Exception(res["retmsg"])
|
||||
|
||||
def create_assistant(self, name: str = "assistant", avatar: str = "path", knowledgebases: List[DataSet] = [],
|
||||
llm: Assistant.LLM = None, prompt: Assistant.Prompt = None) -> Assistant:
|
||||
datasets = []
|
||||
for dataset in knowledgebases:
|
||||
datasets.append(dataset.to_json())
|
||||
|
||||
if llm is None:
|
||||
llm = Assistant.LLM(self, {"model_name": "deepseek-chat",
|
||||
"temperature": 0.1,
|
||||
"top_p": 0.3,
|
||||
"presence_penalty": 0.4,
|
||||
"frequency_penalty": 0.7,
|
||||
"max_tokens": 512, })
|
||||
if prompt is None:
|
||||
prompt = Assistant.Prompt(self, {"similarity_threshold": 0.2,
|
||||
"keywords_similarity_weight": 0.7,
|
||||
"top_n": 8,
|
||||
"variables": [{
|
||||
"key": "knowledge",
|
||||
"optional": True
|
||||
}], "rerank_model": "",
|
||||
"empty_response": None,
|
||||
"opener": None,
|
||||
"show_quote": True,
|
||||
"prompt": None})
|
||||
if prompt.opener is None:
|
||||
prompt.opener = "Hi! I'm your assistant, what can I do for you?"
|
||||
if prompt.prompt is None:
|
||||
prompt.prompt = (
|
||||
"You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. "
|
||||
"Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, "
|
||||
"your answer must include the sentence 'The answer you are looking for is not found in the knowledge base!' "
|
||||
"Answers need to consider chat history.\nHere is the knowledge base:\n{knowledge}\nThe above is the knowledge base."
|
||||
)
|
||||
|
||||
temp_dict = {"name": name,
|
||||
"avatar": avatar,
|
||||
"knowledgebases": datasets,
|
||||
"llm": llm.to_json(),
|
||||
"prompt": prompt.to_json()}
|
||||
res = self.post("/assistant/save", temp_dict)
|
||||
res = res.json()
|
||||
if res.get("retmsg") == "success":
|
||||
return Assistant(self, res["data"])
|
||||
raise Exception(res["retmsg"])
|
||||
|
||||
def get_assistant(self, id: str = None, name: str = None) -> Assistant:
|
||||
res = self.get("/assistant/get", {"id": id, "name": name})
|
||||
res = res.json()
|
||||
if res.get("retmsg") == "success":
|
||||
return Assistant(self, res['data'])
|
||||
raise Exception(res["retmsg"])
|
||||
|
||||
def list_assistants(self) -> List[Assistant]:
|
||||
res = self.get("/assistant/list")
|
||||
res = res.json()
|
||||
result_list = []
|
||||
if res.get("retmsg") == "success":
|
||||
for data in res['data']:
|
||||
result_list.append(Assistant(self, data))
|
||||
return result_list
|
||||
raise Exception(res["retmsg"])
|
@ -1,4 +1,4 @@
|
||||
|
||||
|
||||
API_KEY = 'ragflow-k0N2I1MzQwNjNhMzExZWY5ODg1MDI0Mm'
|
||||
API_KEY = 'ragflow-k0YzUxMGY4NjY5YTExZWY5MjI5MDI0Mm'
|
||||
HOST_ADDRESS = 'http://127.0.0.1:9380'
|
66
sdk/python/test/t_assistant.py
Normal file
66
sdk/python/test/t_assistant.py
Normal file
@ -0,0 +1,66 @@
|
||||
from ragflow import RAGFlow, Assistant
|
||||
|
||||
from common import API_KEY, HOST_ADDRESS
|
||||
from test_sdkbase import TestSdk
|
||||
|
||||
|
||||
class TestAssistant(TestSdk):
|
||||
def test_create_assistant_with_success(self):
|
||||
"""
|
||||
Test creating an assistant with success
|
||||
"""
|
||||
rag = RAGFlow(API_KEY, HOST_ADDRESS)
|
||||
kb = rag.get_dataset(name="God")
|
||||
assistant = rag.create_assistant("God",knowledgebases=[kb])
|
||||
if isinstance(assistant, Assistant):
|
||||
assert assistant.name == "God", "Name does not match."
|
||||
else:
|
||||
assert False, f"Failed to create assistant, error: {assistant}"
|
||||
|
||||
def test_update_assistant_with_success(self):
|
||||
"""
|
||||
Test updating an assistant with success.
|
||||
"""
|
||||
rag = RAGFlow(API_KEY, HOST_ADDRESS)
|
||||
kb = rag.get_dataset(name="God")
|
||||
assistant = rag.create_assistant("ABC",knowledgebases=[kb])
|
||||
if isinstance(assistant, Assistant):
|
||||
assert assistant.name == "ABC", "Name does not match."
|
||||
assistant.name = 'DEF'
|
||||
res = assistant.save()
|
||||
assert res is True, f"Failed to update assistant, error: {res}"
|
||||
else:
|
||||
assert False, f"Failed to create assistant, error: {assistant}"
|
||||
|
||||
def test_delete_assistant_with_success(self):
|
||||
"""
|
||||
Test deleting an assistant with success
|
||||
"""
|
||||
rag = RAGFlow(API_KEY, HOST_ADDRESS)
|
||||
kb = rag.get_dataset(name="God")
|
||||
assistant = rag.create_assistant("MA",knowledgebases=[kb])
|
||||
if isinstance(assistant, Assistant):
|
||||
assert assistant.name == "MA", "Name does not match."
|
||||
res = assistant.delete()
|
||||
assert res is True, f"Failed to delete assistant, error: {res}"
|
||||
else:
|
||||
assert False, f"Failed to create assistant, error: {assistant}"
|
||||
|
||||
def test_list_assistants_with_success(self):
|
||||
"""
|
||||
Test listing assistants with success
|
||||
"""
|
||||
rag = RAGFlow(API_KEY, HOST_ADDRESS)
|
||||
list_assistants = rag.list_assistants()
|
||||
assert len(list_assistants) > 0, "Do not exist any assistant"
|
||||
for assistant in list_assistants:
|
||||
assert isinstance(assistant, Assistant), "Existence type is not assistant."
|
||||
|
||||
def test_get_detail_assistant_with_success(self):
|
||||
"""
|
||||
Test getting an assistant's detail with success
|
||||
"""
|
||||
rag = RAGFlow(API_KEY, HOST_ADDRESS)
|
||||
assistant = rag.get_assistant(name="God")
|
||||
assert isinstance(assistant, Assistant), f"Failed to get assistant, error: {assistant}."
|
||||
assert assistant.name == "God", "Name does not match"
|
Loading…
x
Reference in New Issue
Block a user