mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-06-03 19:03:59 +08:00
Code refactor. (#4291)
### What problem does this PR solve? ### Type of change - [x] Refactoring
This commit is contained in:
parent
f619d5a9b6
commit
8fb18f37f6
@ -16,6 +16,7 @@
|
||||
import random
|
||||
from abc import ABC
|
||||
from functools import partial
|
||||
from typing import Tuple, Union
|
||||
|
||||
import pandas as pd
|
||||
|
||||
@ -76,4 +77,13 @@ class Answer(ComponentBase, ABC):
|
||||
def set_exception(self, e):
|
||||
self.exception = e
|
||||
|
||||
def output(self, allow_partial=True) -> Tuple[str, Union[pd.DataFrame, partial]]:
|
||||
if allow_partial:
|
||||
return super.output()
|
||||
|
||||
for r, c in self._canvas.history[::-1]:
|
||||
if r == "user":
|
||||
return self._param.output_var_name, pd.DataFrame([{"content": c}])
|
||||
|
||||
self._param.output_var_name, pd.DataFrame([])
|
||||
|
||||
|
@ -146,12 +146,16 @@ def run():
|
||||
|
||||
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "id": message_id})
|
||||
canvas.history.append(("assistant", final_ans["content"]))
|
||||
if not canvas.path[-1]:
|
||||
canvas.path.pop(-1)
|
||||
if final_ans.get("reference"):
|
||||
canvas.reference.append(final_ans["reference"])
|
||||
cvs.dsl = json.loads(str(canvas))
|
||||
UserCanvasService.update_by_id(req["id"], cvs.to_dict())
|
||||
except Exception as e:
|
||||
cvs.dsl = json.loads(str(canvas))
|
||||
if not canvas.path[-1]:
|
||||
canvas.path.pop(-1)
|
||||
UserCanvasService.update_by_id(req["id"], cvs.to_dict())
|
||||
traceback.print_exc()
|
||||
yield "data:" + json.dumps({"code": 500, "message": str(e),
|
||||
|
@ -103,10 +103,7 @@ def set_dialog():
|
||||
}
|
||||
if not DialogService.save(**dia):
|
||||
return get_data_error_result(message="Fail to new a dialog!")
|
||||
e, dia = DialogService.get_by_id(dia["id"])
|
||||
if not e:
|
||||
return get_data_error_result(message="Fail to new a dialog!")
|
||||
return get_json_result(data=dia.to_json())
|
||||
return get_json_result(data=dia)
|
||||
else:
|
||||
del req["dialog_id"]
|
||||
if "kb_names" in req:
|
||||
@ -117,6 +114,7 @@ def set_dialog():
|
||||
if not e:
|
||||
return get_data_error_result(message="Fail to update a dialog!")
|
||||
dia = dia.to_dict()
|
||||
dia.update(req)
|
||||
dia["kb_ids"], dia["kb_names"] = get_kb_names(dia["kb_ids"])
|
||||
return get_json_result(data=dia)
|
||||
except Exception as e:
|
||||
|
@ -185,7 +185,8 @@ def rm():
|
||||
return get_data_error_result(
|
||||
message="Database error (Document removal)!")
|
||||
f2d = File2DocumentService.get_by_document_id(doc.id)
|
||||
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
|
||||
if f2d:
|
||||
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
|
||||
File2DocumentService.delete_by_document_id(doc.id)
|
||||
FileService.filter_delete(
|
||||
[File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kbs[0].name])
|
||||
|
@ -120,6 +120,10 @@ def server_error_response(e):
|
||||
if len(e.args) > 1:
|
||||
return get_json_result(
|
||||
code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=e.args[1])
|
||||
if repr(e).find("index_not_found_exception") >= 0:
|
||||
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR,
|
||||
message="No chunk found, please upload file and parse it.")
|
||||
|
||||
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e))
|
||||
|
||||
|
||||
|
@ -11,20 +11,20 @@ Given a text document that is potentially relevant to this activity and a list o
|
||||
|
||||
-Steps-
|
||||
1. Identify all entities. For each identified entity, extract the following information:
|
||||
- entity_name: Name of the entity, capitalized
|
||||
- entity_name: Name of the entity, capitalized, in language of 'Text'
|
||||
- entity_type: One of the following types: [{entity_types}]
|
||||
- entity_description: Comprehensive description of the entity's attributes and activities
|
||||
- entity_description: Comprehensive description of the entity's attributes and activities in language of 'Text'
|
||||
Format each entity as ("entity"{tuple_delimiter}<entity_name>{tuple_delimiter}<entity_type>{tuple_delimiter}<entity_description>
|
||||
|
||||
2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.
|
||||
For each pair of related entities, extract the following information:
|
||||
- source_entity: name of the source entity, as identified in step 1
|
||||
- target_entity: name of the target entity, as identified in step 1
|
||||
- relationship_description: explanation as to why you think the source entity and the target entity are related to each other
|
||||
- relationship_description: explanation as to why you think the source entity and the target entity are related to each other in language of 'Text'
|
||||
- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity
|
||||
Format each relationship as ("relationship"{tuple_delimiter}<source_entity>{tuple_delimiter}<target_entity>{tuple_delimiter}<relationship_description>{tuple_delimiter}<relationship_strength>)
|
||||
|
||||
3. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **{record_delimiter}** as the list delimiter.
|
||||
3. Return output as a single list of all the entities and relationships identified in steps 1 and 2. Use **{record_delimiter}** as the list delimiter.
|
||||
|
||||
4. When finished, output {completion_delimiter}
|
||||
|
||||
|
@ -81,7 +81,7 @@ def get_llm_cache(llmnm, txt, history, genconf):
|
||||
return bin
|
||||
|
||||
|
||||
def set_llm_cache(llmnm, txt, v: str, history, genconf):
|
||||
def set_llm_cache(llmnm, txt, v, history, genconf):
|
||||
hasher = xxhash.xxh64()
|
||||
hasher.update(str(llmnm).encode("utf-8"))
|
||||
hasher.update(str(txt).encode("utf-8"))
|
||||
|
@ -153,11 +153,9 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
|
||||
if re.search(r"\.docx$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
for txt in Docx()(filename, binary):
|
||||
sections.append(txt)
|
||||
callback(0.8, "Finish parsing.")
|
||||
chunks = sections
|
||||
return tokenize_chunks(chunks, doc, eng, pdf_parser)
|
||||
chunks = Docx()(filename, binary)
|
||||
callback(0.7, "Finish parsing.")
|
||||
return tokenize_chunks(chunks, doc, eng, None)
|
||||
|
||||
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||||
pdf_parser = Pdf() if kwargs.get(
|
||||
|
@ -193,7 +193,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
sections = [(t, lvl, [[0] * 5]) for t, lvl in sections]
|
||||
# set pivot using the most frequent type of title,
|
||||
# then merge between 2 pivot
|
||||
if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.1:
|
||||
if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.03:
|
||||
max_lvl = max([lvl for _, lvl in pdf_parser.outlines])
|
||||
most_level = max(0, max_lvl - 1)
|
||||
levels = []
|
||||
@ -256,7 +256,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
|
||||
return res
|
||||
|
||||
if re.search(r"\.docx$", filename, re.IGNORECASE):
|
||||
elif re.search(r"\.docx$", filename, re.IGNORECASE):
|
||||
docx_parser = Docx()
|
||||
ti_list, tbls = docx_parser(filename, binary,
|
||||
from_page=0, to_page=10000, callback=callback)
|
||||
|
@ -185,7 +185,7 @@ def chunk(filename, binary=None, from_page=0, to_page=10000000000,
|
||||
"datetime": "_dt",
|
||||
"bool": "_kwd"}
|
||||
for df in dfs:
|
||||
for n in ["id", "index", "idx"]:
|
||||
for n in ["id", "_id", "index", "idx"]:
|
||||
if n in df.columns:
|
||||
del df[n]
|
||||
clmns = df.columns.values
|
||||
|
Loading…
x
Reference in New Issue
Block a user