mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-15 12:15:59 +08:00
Add pdf support for QA parser (#1155)
### What problem does this PR solve? Support extracting questions and answers from PDF files ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
parent
7dc39cbfa6
commit
90975460af
@ -13,13 +13,13 @@
|
||||
import re
|
||||
from copy import deepcopy
|
||||
from io import BytesIO
|
||||
from timeit import default_timer as timer
|
||||
from nltk import word_tokenize
|
||||
from openpyxl import load_workbook
|
||||
from rag.nlp import is_english, random_choices, find_codec
|
||||
from rag.nlp import rag_tokenizer
|
||||
from deepdoc.parser import ExcelParser
|
||||
|
||||
|
||||
from rag.nlp import is_english, random_choices, find_codec, qbullets_category, add_positions, has_qbullet
|
||||
from rag.nlp import rag_tokenizer, tokenize_table
|
||||
from rag.settings import cron_logger
|
||||
from deepdoc.parser import PdfParser, ExcelParser
|
||||
class Excel(ExcelParser):
|
||||
def __call__(self, fnm, binary=None, callback=None):
|
||||
if not binary:
|
||||
@ -62,12 +62,80 @@ class Excel(ExcelParser):
|
||||
[rmPrefix(q) for q, _ in random_choices(res, k=30) if len(q) > 1])
|
||||
return res
|
||||
|
||||
|
||||
class Pdf(PdfParser):
|
||||
def __call__(self, filename, binary=None, from_page=0,
|
||||
to_page=100000, zoomin=3, callback=None):
|
||||
start = timer()
|
||||
callback(msg="OCR is running...")
|
||||
self.__images__(
|
||||
filename if not binary else binary,
|
||||
zoomin,
|
||||
from_page,
|
||||
to_page,
|
||||
callback
|
||||
)
|
||||
callback(msg="OCR finished")
|
||||
cron_logger.info("OCR({}~{}): {}".format(from_page, to_page, timer() - start))
|
||||
start = timer()
|
||||
self._layouts_rec(zoomin, drop=False)
|
||||
callback(0.63, "Layout analysis finished.")
|
||||
self._table_transformer_job(zoomin)
|
||||
callback(0.65, "Table analysis finished.")
|
||||
self._text_merge()
|
||||
callback(0.67, "Text merging finished")
|
||||
tbls = self._extract_table_figure(True, zoomin, True, True)
|
||||
#self._naive_vertical_merge()
|
||||
# self._concat_downward()
|
||||
#self._filter_forpages()
|
||||
cron_logger.info("layouts: {}".format(timer() - start))
|
||||
sections = [b["text"] for b in self.boxes]
|
||||
bull_x0_list = []
|
||||
q_bull, reg = qbullets_category(sections)
|
||||
if q_bull == -1:
|
||||
raise ValueError("Unable to recognize Q&A structure.")
|
||||
qai_list = []
|
||||
last_q, last_a, last_tag = '', '', ''
|
||||
last_index = -1
|
||||
last_box = {'text':''}
|
||||
last_bull = None
|
||||
for box in self.boxes:
|
||||
section, line_tag = box['text'], self._line_tag(box, zoomin)
|
||||
has_bull, index = has_qbullet(reg, box, last_box, last_index, last_bull, bull_x0_list)
|
||||
last_box, last_index, last_bull = box, index, has_bull
|
||||
if not has_bull: # No question bullet
|
||||
if not last_q:
|
||||
continue
|
||||
else:
|
||||
last_a = f'{last_a}{section}'
|
||||
last_tag = f'{last_tag}{line_tag}'
|
||||
else:
|
||||
if last_q:
|
||||
qai_list.append((last_q, last_a, *self.crop(last_tag, need_position=True)))
|
||||
last_q, last_a, last_tag = '', '', ''
|
||||
last_q = has_bull.group()
|
||||
_, end = has_bull.span()
|
||||
last_a = section[end:]
|
||||
last_tag = line_tag
|
||||
if last_q:
|
||||
qai_list.append((last_q, last_a, *self.crop(last_tag, need_position=True)))
|
||||
return qai_list, tbls
|
||||
|
||||
def rmPrefix(txt):
|
||||
return re.sub(
|
||||
r"^(问题|答案|回答|user|assistant|Q|A|Question|Answer|问|答)[\t:: ]+", "", txt.strip(), flags=re.IGNORECASE)
|
||||
|
||||
|
||||
def beAdocPdf(d, q, a, eng, image, poss):
|
||||
qprefix = "Question: " if eng else "问题:"
|
||||
aprefix = "Answer: " if eng else "回答:"
|
||||
d["content_with_weight"] = "\t".join(
|
||||
[qprefix + rmPrefix(q), aprefix + rmPrefix(a)])
|
||||
d["content_ltks"] = rag_tokenizer.tokenize(q)
|
||||
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
||||
d["image"] = image
|
||||
add_positions(d, poss)
|
||||
return d
|
||||
|
||||
def beAdoc(d, q, a, eng):
|
||||
qprefix = "Question: " if eng else "问题:"
|
||||
aprefix = "Answer: " if eng else "回答:"
|
||||
@ -145,6 +213,19 @@ def chunk(filename, binary=None, lang="Chinese", callback=None, **kwargs):
|
||||
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
||||
|
||||
return res
|
||||
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||||
pdf_parser = Pdf()
|
||||
count = 0
|
||||
qai_list, tbls = pdf_parser(filename if not binary else binary,
|
||||
from_page=0, to_page=10000, callback=callback)
|
||||
|
||||
res = tokenize_table(tbls, doc, eng)
|
||||
|
||||
for q, a, image, poss in qai_list:
|
||||
count += 1
|
||||
res.append(beAdocPdf(deepcopy(doc), q, a, eng, image, poss))
|
||||
return res
|
||||
|
||||
|
||||
raise NotImplementedError(
|
||||
"Excel and csv(txt) format files are supported.")
|
||||
@ -153,6 +234,8 @@ def chunk(filename, binary=None, lang="Chinese", callback=None, **kwargs):
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
|
||||
def dummy(a, b):
|
||||
def dummy(prog=None, msg=""):
|
||||
pass
|
||||
chunk(sys.argv[1], callback=dummy)
|
||||
import json
|
||||
|
||||
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)
|
||||
|
@ -21,6 +21,9 @@ from rag.utils import num_tokens_from_string
|
||||
from . import rag_tokenizer
|
||||
import re
|
||||
import copy
|
||||
import roman_numbers as r
|
||||
from word2number import w2n
|
||||
from cn2an import cn2an
|
||||
|
||||
all_codecs = [
|
||||
'utf-8', 'gb2312', 'gbk', 'utf_16', 'ascii', 'big5', 'big5hkscs',
|
||||
@ -57,6 +60,95 @@ def find_codec(blob):
|
||||
|
||||
return "utf-8"
|
||||
|
||||
QUESTION_PATTERN = [
|
||||
r"第([零一二三四五六七八九十百0-9]+)问",
|
||||
r"第([零一二三四五六七八九十百0-9]+)条",
|
||||
r"[\((]([零一二三四五六七八九十百]+)[\))]",
|
||||
r"第([0-9]+)问",
|
||||
r"第([0-9]+)条",
|
||||
r"([0-9]{1,2})[\. 、]",
|
||||
r"([零一二三四五六七八九十百]+)[ 、]",
|
||||
r"[\((]([0-9]{1,2})[\))]",
|
||||
r"QUESTION (ONE|TWO|THREE|FOUR|FIVE|SIX|SEVEN|EIGHT|NINE|TEN)",
|
||||
r"QUESTION (I+V?|VI*|XI|IX|X)",
|
||||
r"QUESTION ([0-9]+)",
|
||||
]
|
||||
|
||||
def has_qbullet(reg, box, last_box, last_index, last_bull, bull_x0_list):
|
||||
section, last_section = box['text'], last_box['text']
|
||||
q_reg = r'(\w|\W)*?(?:?|\?|\n|$)+'
|
||||
full_reg = reg + q_reg
|
||||
has_bull = re.match(full_reg, section)
|
||||
index_str = None
|
||||
if has_bull:
|
||||
if 'x0' not in last_box:
|
||||
last_box['x0'] = box['x0']
|
||||
if 'top' not in last_box:
|
||||
last_box['top'] = box['top']
|
||||
if last_bull and box['x0']-last_box['x0']>10:
|
||||
return None, last_index
|
||||
if not last_bull and box['x0'] >= last_box['x0'] and box['top'] - last_box['top'] < 20:
|
||||
return None, last_index
|
||||
avg_bull_x0 = 0
|
||||
if bull_x0_list:
|
||||
avg_bull_x0 = sum(bull_x0_list) / len(bull_x0_list)
|
||||
else:
|
||||
avg_bull_x0 = box['x0']
|
||||
if box['x0'] - avg_bull_x0 > 10:
|
||||
return None, last_index
|
||||
index_str = has_bull.group(1)
|
||||
index = index_int(index_str)
|
||||
if last_section[-1] == ':' or last_section[-1] == ':':
|
||||
return None, last_index
|
||||
if not last_index or index >= last_index:
|
||||
bull_x0_list.append(box['x0'])
|
||||
return has_bull, index
|
||||
if section[-1] == '?' or section[-1] == '?':
|
||||
bull_x0_list.append(box['x0'])
|
||||
return has_bull, index
|
||||
if box['layout_type'] == 'title':
|
||||
bull_x0_list.append(box['x0'])
|
||||
return has_bull, index
|
||||
pure_section = section.lstrip(re.match(reg, section).group()).lower()
|
||||
ask_reg = r'(what|when|where|how|why|which|who|whose|为什么|为啥|哪)'
|
||||
if re.match(ask_reg, pure_section):
|
||||
bull_x0_list.append(box['x0'])
|
||||
return has_bull, index
|
||||
return None, last_index
|
||||
|
||||
def index_int(index_str):
|
||||
res = -1
|
||||
try:
|
||||
res=int(index_str)
|
||||
except ValueError:
|
||||
try:
|
||||
res=w2n.word_to_num(index_str)
|
||||
except ValueError:
|
||||
try:
|
||||
res = cn2an(index_str)
|
||||
except ValueError:
|
||||
try:
|
||||
res = r.number(index_str)
|
||||
except ValueError:
|
||||
return -1
|
||||
return res
|
||||
|
||||
def qbullets_category(sections):
|
||||
global QUESTION_PATTERN
|
||||
hits = [0] * len(QUESTION_PATTERN)
|
||||
for i, pro in enumerate(QUESTION_PATTERN):
|
||||
for sec in sections:
|
||||
if re.match(pro, sec) and not not_bullet(sec):
|
||||
hits[i] += 1
|
||||
break
|
||||
maxium = 0
|
||||
res = -1
|
||||
for i, h in enumerate(hits):
|
||||
if h <= maxium:
|
||||
continue
|
||||
res = i
|
||||
maxium = h
|
||||
return res, QUESTION_PATTERN[res]
|
||||
|
||||
BULLET_PATTERN = [[
|
||||
r"第[零一二三四五六七八九十百0-9]+(分?编|部分)",
|
||||
|
@ -141,3 +141,6 @@ readability-lxml==0.8.1
|
||||
html_text==0.6.2
|
||||
selenium==4.21.0
|
||||
webdriver-manager==4.0.1
|
||||
cn2an==0.5.22
|
||||
roman-numbers==1.0.2
|
||||
word2number==1.1
|
@ -139,4 +139,7 @@ fasttext==0.9.2
|
||||
volcengine==1.0.141
|
||||
opencv-python-headless==4.9.0.80
|
||||
readability-lxml==0.8.1
|
||||
html_text==0.6.2
|
||||
html_text==0.6.2
|
||||
cn2an==0.5.22
|
||||
roman-numbers==1.0.2
|
||||
word2number==1.1
|
@ -126,4 +126,7 @@ fasttext==0.9.2
|
||||
umap-learn
|
||||
volcengine==1.0.141
|
||||
readability-lxml==0.8.1
|
||||
html_text==0.6.2
|
||||
html_text==0.6.2
|
||||
cn2an==0.5.22
|
||||
roman-numbers==1.0.2
|
||||
word2number==1.1
|
Loading…
x
Reference in New Issue
Block a user