refine manul parser (#131)

This commit is contained in:
KevinHuSh 2024-03-19 12:26:04 +08:00 committed by GitHub
parent d56c9e7630
commit 9da671b951
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 145 additions and 52 deletions

View File

@ -50,7 +50,7 @@ platform to empower your business with AI.
# Release Notification
**Star us on GitHub, and be notified for a new releases instantly!**
![star-us](https://github.com/langgenius/dify/assets/100913391/95f37259-7370-4456-a9f0-0bc01ef8642f)
![star-us](https://github.com/infiniflow/ragflow/assets/12318111/2c2fbb5e-c403-496f-a1fd-64ba0fdbf74f)
# Installation
## System Requirements

View File

@ -274,6 +274,8 @@ def use_sql(question, field_map, tenant_id, chat_mdl):
return retrievaler.sql_retrieval(sql, format="json"), sql
tbl, sql = get_table()
if tbl is None:
return None, None
if tbl.get("error") and tried_times <= 2:
user_promt = """
表名{}

View File

@ -107,7 +107,7 @@ def list():
llms = LLMService.get_all()
llms = [m.to_dict() for m in llms if m.status == StatusEnum.VALID.value]
for m in llms:
m["available"] = m["fid"] in facts
m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding"
res = {}
for m in llms:

View File

@ -227,7 +227,7 @@ def init_llm_factory():
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[3]["name"],
"llm_name": "flag-enbedding",
"llm_name": "flag-embedding",
"tags": "TEXT EMBEDDING,",
"max_tokens": 128 * 1000,
"model_type": LLMType.EMBEDDING.value
@ -241,7 +241,7 @@ def init_llm_factory():
"model_type": LLMType.CHAT.value
}, {
"fid": factory_infos[4]["name"],
"llm_name": "flag-enbedding",
"llm_name": "flag-embedding",
"tags": "TEXT EMBEDDING,",
"max_tokens": 128 * 1000,
"model_type": LLMType.EMBEDDING.value

View File

@ -72,13 +72,13 @@ default_llm = {
},
"Local": {
"chat_model": "qwen-14B-chat",
"embedding_model": "flag-enbedding",
"embedding_model": "flag-embedding",
"image2text_model": "",
"asr_model": "",
},
"Moonshot": {
"chat_model": "moonshot-v1-8k",
"embedding_model": "flag-enbedding",
"embedding_model": "",
"image2text_model": "",
"asr_model": "",
}

View File

@ -247,7 +247,7 @@ class HuParser:
b["SP"] = ii
def __ocr(self, pagenum, img, chars, ZM=3):
bxs = self.ocr(np.array(img))
bxs = self.ocr.detect(np.array(img))
if not bxs:
self.boxes.append([])
return
@ -278,8 +278,10 @@ class HuParser:
for b in bxs:
if not b["text"]:
b["text"] = b["txt"]
left, right, top, bott = b["x0"]*ZM, b["x1"]*ZM, b["top"]*ZM, b["bottom"]*ZM
b["text"] = self.ocr.recognize(np.array(img), np.array([[left, top], [right, top], [right, bott], [left, bott]], dtype=np.float32))
del b["txt"]
bxs = [b for b in bxs if b["text"]]
if self.mean_height[-1] == 0:
self.mean_height[-1] = np.median([b["bottom"] - b["top"]
for b in bxs])

View File

@ -69,7 +69,7 @@ def load_model(model_dir, nm):
options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
options.intra_op_num_threads = 2
options.inter_op_num_threads = 2
if ort.get_device() == "GPU":
if False and ort.get_device() == "GPU":
sess = ort.InferenceSession(model_file_path, options=options, providers=['CUDAExecutionProvider'])
else:
sess = ort.InferenceSession(model_file_path, options=options, providers=['CPUExecutionProvider'])
@ -366,7 +366,7 @@ class TextDetector(object):
'keep_keys': ['image', 'shape']
}
}]
postprocess_params = {"name": "DBPostProcess", "thresh": 0.3, "box_thresh": 0.6, "max_candidates": 1000,
postprocess_params = {"name": "DBPostProcess", "thresh": 0.3, "box_thresh": 0.5, "max_candidates": 1000,
"unclip_ratio": 1.5, "use_dilation": False, "score_mode": "fast", "box_type": "quad"}
self.postprocess_op = build_post_process(postprocess_params)
@ -534,6 +534,34 @@ class OCR(object):
break
return _boxes
def detect(self, img):
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
if img is None:
return None, None, time_dict
start = time.time()
dt_boxes, elapse = self.text_detector(img)
time_dict['det'] = elapse
if dt_boxes is None:
end = time.time()
time_dict['all'] = end - start
return None, None, time_dict
else:
cron_logger.debug("dt_boxes num : {}, elapsed : {}".format(
len(dt_boxes), elapse))
return zip(self.sorted_boxes(dt_boxes), [("",0) for _ in range(len(dt_boxes))])
def recognize(self, ori_im, box):
img_crop = self.get_rotate_crop_image(ori_im, box)
rec_res, elapse = self.text_recognizer([img_crop])
text, score = rec_res[0]
if score < self.drop_score:return ""
return text
def __call__(self, img, cls=True):
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
@ -562,6 +590,7 @@ class OCR(object):
img_crop_list.append(img_crop)
rec_res, elapse = self.text_recognizer(img_crop_list)
time_dict['rec'] = elapse
cron_logger.debug("rec_res num : {}, elapsed : {}".format(
len(rec_res), elapse))
@ -575,6 +604,7 @@ class OCR(object):
end = time.time()
time_dict['all'] = end - start
#for bno in range(len(img_crop_list)):
# print(f"{bno}, {rec_res[bno]}")

View File

@ -41,7 +41,7 @@ class Recognizer(object):
if not os.path.exists(model_file_path):
raise ValueError("not find model file path {}".format(
model_file_path))
if ort.get_device() == "GPU":
if False and ort.get_device() == "GPU":
options = ort.SessionOptions()
options.enable_cpu_mem_arena = False
self.ort_sess = ort.InferenceSession(model_file_path, options=options, providers=[('CUDAExecutionProvider')])

View File

@ -2,7 +2,7 @@ import copy
import re
from api.db import ParserType
from rag.nlp import huqie, tokenize, tokenize_table, add_positions
from rag.nlp import huqie, tokenize, tokenize_table, add_positions, bullets_category, title_frequency
from deepdoc.parser import PdfParser
from rag.utils import num_tokens_from_string
@ -14,6 +14,8 @@ class Pdf(PdfParser):
def __call__(self, filename, binary=None, from_page=0,
to_page=100000, zoomin=3, callback=None):
from timeit import default_timer as timer
start = timer()
callback(msg="OCR is running...")
self.__images__(
filename if not binary else binary,
@ -23,19 +25,38 @@ class Pdf(PdfParser):
callback
)
callback(msg="OCR finished.")
#for bb in self.boxes:
# for b in bb:
# print(b)
print("OCR:", timer()-start)
def get_position(bx):
poss = []
pn = bx["page_number"]
top = bx["top"] - self.page_cum_height[pn - 1]
bott = bx["bottom"] - self.page_cum_height[pn - 1]
poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn-1].size[1]/zoomin)))
while bott * zoomin > self.page_images[pn - 1].size[1]:
bott -= self.page_images[pn- 1].size[1] / zoomin
top = 0
pn += 1
poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn - 1].size[1] / zoomin)))
return poss
def tag(pn, left, right, top, bottom):
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
.format(pn, left, right, top, bottom)
from timeit import default_timer as timer
start = timer()
self._layouts_rec(zoomin)
callback(0.65, "Layout analysis finished.")
print("paddle layouts:", timer() - start)
self._table_transformer_job(zoomin)
callback(0.67, "Table analysis finished.")
self._text_merge()
self._concat_downward(concat_between_pages=False)
tbls = self._extract_table_figure(True, zoomin, True, True)
self._naive_vertical_merge()
self._filter_forpages()
callback(0.68, "Text merging finished")
tbls = self._extract_table_figure(True, zoomin, True, True)
# clean mess
for b in self.boxes:
@ -44,25 +65,33 @@ class Pdf(PdfParser):
# merge chunks with the same bullets
self._merge_with_same_bullet()
# merge title with decent chunk
i = 0
while i + 1 < len(self.boxes):
b = self.boxes[i]
if b.get("layoutno","").find("title") < 0:
i += 1
continue
b_ = self.boxes[i + 1]
b_["text"] = b["text"] + "\n" + b_["text"]
b_["x0"] = min(b["x0"], b_["x0"])
b_["x1"] = max(b["x1"], b_["x1"])
b_["top"] = b["top"]
self.boxes.pop(i)
# set pivot using the most frequent type of title,
# then merge between 2 pivot
bull = bullets_category([b["text"] for b in self.boxes])
most_level, levels = title_frequency(bull, [(b["text"], b.get("layout_no","")) for b in self.boxes])
assert len(self.boxes) == len(levels)
sec_ids = []
sid = 0
for i, lvl in enumerate(levels):
if lvl <= most_level: sid += 1
sec_ids.append(sid)
#print(lvl, self.boxes[i]["text"], most_level)
callback(0.8, "Parsing finished")
for b in self.boxes: print(b["text"], b.get("layoutno"))
sections = [(b["text"], sec_ids[i], get_position(b)) for i, b in enumerate(self.boxes)]
for (img, rows), poss in tbls:
sections.append((rows[0], -1, [(p[0]+1, p[1], p[2], p[3], p[4]) for p in poss]))
print(tbls)
return [b["text"] + self._line_tag(b, zoomin) for b in self.boxes], tbls
chunks = []
last_sid = -2
for txt, sec_id, poss in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1])):
poss = "\t".join([tag(*pos) for pos in poss])
if sec_id == last_sid or sec_id == -1:
if chunks:
chunks[-1] += "\n" + txt + poss
continue
chunks.append(txt + poss)
if sec_id >-1: last_sid = sec_id
return chunks
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
@ -73,7 +102,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
if re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
cks, tbls = pdf_parser(filename if not binary else binary,
cks = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
else: raise NotImplementedError("file type not supported yet(pdf supported)")
doc = {
@ -84,16 +113,15 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
# is it English
eng = lang.lower() == "english"#pdf_parser.is_english
res = tokenize_table(tbls, doc, eng)
i = 0
chunk = []
tk_cnt = 0
res = []
def add_chunk():
nonlocal chunk, res, doc, pdf_parser, tk_cnt
d = copy.deepcopy(doc)
ck = "\n".join(chunk)
tokenize(d, pdf_parser.remove_tag(ck), pdf_parser.is_english)
tokenize(d, pdf_parser.remove_tag(ck), eng)
d["image"], poss = pdf_parser.crop(ck, need_position=True)
add_positions(d, poss)
res.append(d)
@ -101,7 +129,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
tk_cnt = 0
while i < len(cks):
if tk_cnt > 128: add_chunk()
if tk_cnt > 256: add_chunk()
txt = cks[i]
txt_ = pdf_parser.remove_tag(txt)
i += 1
@ -109,6 +137,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
chunk.append(txt)
tk_cnt += cnt
if chunk: add_chunk()
for i, d in enumerate(res):
print(d)
# d["image"].save(f"./logs/{i}.jpg")
@ -117,6 +146,6 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
if __name__ == "__main__":
import sys
def dummy(a, b):
def dummy(prog=None, msg=""):
pass
chunk(sys.argv[1], callback=dummy)

View File

@ -100,7 +100,10 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
print("--", ck)
d = copy.deepcopy(doc)
if pdf_parser:
d["image"], poss = pdf_parser.crop(ck, need_position=True)
try:
d["image"], poss = pdf_parser.crop(ck, need_position=True)
except Exception as e:
continue
add_positions(d, poss)
ck = pdf_parser.remove_tag(ck)
tokenize(d, ck, eng)

View File

@ -1,4 +1,6 @@
import random
from collections import Counter
from rag.utils import num_tokens_from_string
from . import huqie
from nltk import word_tokenize
@ -175,6 +177,36 @@ def make_colon_as_title(sections):
i += 1
def title_frequency(bull, sections):
bullets_size = len(BULLET_PATTERN[bull])
levels = [bullets_size+1 for _ in range(len(sections))]
if not sections or bull < 0:
return bullets_size+1, levels
for i, (txt, layout) in enumerate(sections):
for j, p in enumerate(BULLET_PATTERN[bull]):
if re.match(p, txt.strip()):
levels[i] = j
break
else:
if re.search(r"(title|head)", layout) and not not_title(txt.split("@")[0]):
levels[i] = bullets_size
most_level = bullets_size+1
for l, c in sorted(Counter(levels).items(), key=lambda x:x[1]*-1):
if l <= bullets_size:
most_level = l
break
return most_level, levels
def not_title(txt):
if re.match(r"第[零一二三四五六七八九十百0-9]+条", txt):
return False
if len(txt.split(" ")) > 12 or (txt.find(" ") < 0 and len(txt) >= 32):
return True
return re.search(r"[,;,。;!!]", txt)
def hierarchical_merge(bull, sections, depth):
if not sections or bull < 0:
return []
@ -185,12 +217,6 @@ def hierarchical_merge(bull, sections, depth):
bullets_size = len(BULLET_PATTERN[bull])
levels = [[] for _ in range(bullets_size + 2)]
def not_title(txt):
if re.match(r"第[零一二三四五六七八九十百0-9]+条", txt):
return False
if len(txt.split(" ")) > 12 or (txt.find(" ") < 0 and len(txt) >= 32):
return True
return re.search(r"[,;,。;!!]", txt)
for i, (txt, layout) in enumerate(sections):
for j, p in enumerate(BULLET_PATTERN[bull]):

View File

@ -38,7 +38,7 @@ class EsQueryer:
"",
txt)
return re.sub(
r"(what|who|how|which|where|why|(is|are|were|was) there) (is|are|were|was)*", "", txt, re.IGNORECASE)
r"(what|who|how|which|where|why|(is|are|were|was) there) (is|are|were|was|to)*", "", txt, re.IGNORECASE)
def question(self, txt, tbl="qa", min_match="60%"):
txt = re.sub(
@ -50,16 +50,16 @@ class EsQueryer:
txt = EsQueryer.rmWWW(txt)
if not self.isChinese(txt):
tks = txt.split(" ")
q = []
tks = [t for t in txt.split(" ") if t.strip()]
q = tks
for i in range(1, len(tks)):
q.append("\"%s %s\"~2" % (tks[i - 1], tks[i]))
q.append("\"%s %s\"^2" % (tks[i - 1], tks[i]))
if not q:
q.append(txt)
return Q("bool",
must=Q("query_string", fields=self.flds,
type="best_fields", query=" OR ".join(q),
boost=1, minimum_should_match="60%")
boost=1, minimum_should_match=min_match)
), txt.split(" ")
def needQieqie(tk):
@ -147,7 +147,7 @@ class EsQueryer:
atks = toDict(atks)
btkss = [toDict(tks) for tks in btkss]
tksim = [self.similarity(atks, btks) for btks in btkss]
return np.array(sims[0]) * vtweight + np.array(tksim) * tkweight, sims[0], tksim
return np.array(sims[0]) * vtweight + np.array(tksim) * tkweight, tksim, sims[0]
def similarity(self, qtwt, dtwt):
if isinstance(dtwt, type("")):

View File

@ -119,6 +119,7 @@ class Dealer:
s["knn"]["filter"] = bqry.to_dict()
s["knn"]["similarity"] = 0.17
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
es_logger.info("【Q】: {}".format(json.dumps(s)))
kwds = set([])
for k in keywords: