mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-14 18:15:53 +08:00
refine manul parser (#131)
This commit is contained in:
parent
d56c9e7630
commit
9da671b951
@ -50,7 +50,7 @@ platform to empower your business with AI.
|
||||
|
||||
# Release Notification
|
||||
**Star us on GitHub, and be notified for a new releases instantly!**
|
||||

|
||||

|
||||
|
||||
# Installation
|
||||
## System Requirements
|
||||
|
@ -274,6 +274,8 @@ def use_sql(question, field_map, tenant_id, chat_mdl):
|
||||
return retrievaler.sql_retrieval(sql, format="json"), sql
|
||||
|
||||
tbl, sql = get_table()
|
||||
if tbl is None:
|
||||
return None, None
|
||||
if tbl.get("error") and tried_times <= 2:
|
||||
user_promt = """
|
||||
表名:{};
|
||||
|
@ -107,7 +107,7 @@ def list():
|
||||
llms = LLMService.get_all()
|
||||
llms = [m.to_dict() for m in llms if m.status == StatusEnum.VALID.value]
|
||||
for m in llms:
|
||||
m["available"] = m["fid"] in facts
|
||||
m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding"
|
||||
|
||||
res = {}
|
||||
for m in llms:
|
||||
|
@ -227,7 +227,7 @@ def init_llm_factory():
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[3]["name"],
|
||||
"llm_name": "flag-enbedding",
|
||||
"llm_name": "flag-embedding",
|
||||
"tags": "TEXT EMBEDDING,",
|
||||
"max_tokens": 128 * 1000,
|
||||
"model_type": LLMType.EMBEDDING.value
|
||||
@ -241,7 +241,7 @@ def init_llm_factory():
|
||||
"model_type": LLMType.CHAT.value
|
||||
}, {
|
||||
"fid": factory_infos[4]["name"],
|
||||
"llm_name": "flag-enbedding",
|
||||
"llm_name": "flag-embedding",
|
||||
"tags": "TEXT EMBEDDING,",
|
||||
"max_tokens": 128 * 1000,
|
||||
"model_type": LLMType.EMBEDDING.value
|
||||
|
@ -72,13 +72,13 @@ default_llm = {
|
||||
},
|
||||
"Local": {
|
||||
"chat_model": "qwen-14B-chat",
|
||||
"embedding_model": "flag-enbedding",
|
||||
"embedding_model": "flag-embedding",
|
||||
"image2text_model": "",
|
||||
"asr_model": "",
|
||||
},
|
||||
"Moonshot": {
|
||||
"chat_model": "moonshot-v1-8k",
|
||||
"embedding_model": "flag-enbedding",
|
||||
"embedding_model": "",
|
||||
"image2text_model": "",
|
||||
"asr_model": "",
|
||||
}
|
||||
|
@ -247,7 +247,7 @@ class HuParser:
|
||||
b["SP"] = ii
|
||||
|
||||
def __ocr(self, pagenum, img, chars, ZM=3):
|
||||
bxs = self.ocr(np.array(img))
|
||||
bxs = self.ocr.detect(np.array(img))
|
||||
if not bxs:
|
||||
self.boxes.append([])
|
||||
return
|
||||
@ -278,8 +278,10 @@ class HuParser:
|
||||
|
||||
for b in bxs:
|
||||
if not b["text"]:
|
||||
b["text"] = b["txt"]
|
||||
left, right, top, bott = b["x0"]*ZM, b["x1"]*ZM, b["top"]*ZM, b["bottom"]*ZM
|
||||
b["text"] = self.ocr.recognize(np.array(img), np.array([[left, top], [right, top], [right, bott], [left, bott]], dtype=np.float32))
|
||||
del b["txt"]
|
||||
bxs = [b for b in bxs if b["text"]]
|
||||
if self.mean_height[-1] == 0:
|
||||
self.mean_height[-1] = np.median([b["bottom"] - b["top"]
|
||||
for b in bxs])
|
||||
|
@ -69,7 +69,7 @@ def load_model(model_dir, nm):
|
||||
options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
|
||||
options.intra_op_num_threads = 2
|
||||
options.inter_op_num_threads = 2
|
||||
if ort.get_device() == "GPU":
|
||||
if False and ort.get_device() == "GPU":
|
||||
sess = ort.InferenceSession(model_file_path, options=options, providers=['CUDAExecutionProvider'])
|
||||
else:
|
||||
sess = ort.InferenceSession(model_file_path, options=options, providers=['CPUExecutionProvider'])
|
||||
@ -366,7 +366,7 @@ class TextDetector(object):
|
||||
'keep_keys': ['image', 'shape']
|
||||
}
|
||||
}]
|
||||
postprocess_params = {"name": "DBPostProcess", "thresh": 0.3, "box_thresh": 0.6, "max_candidates": 1000,
|
||||
postprocess_params = {"name": "DBPostProcess", "thresh": 0.3, "box_thresh": 0.5, "max_candidates": 1000,
|
||||
"unclip_ratio": 1.5, "use_dilation": False, "score_mode": "fast", "box_type": "quad"}
|
||||
|
||||
self.postprocess_op = build_post_process(postprocess_params)
|
||||
@ -534,6 +534,34 @@ class OCR(object):
|
||||
break
|
||||
return _boxes
|
||||
|
||||
def detect(self, img):
|
||||
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
|
||||
|
||||
if img is None:
|
||||
return None, None, time_dict
|
||||
|
||||
start = time.time()
|
||||
dt_boxes, elapse = self.text_detector(img)
|
||||
time_dict['det'] = elapse
|
||||
|
||||
if dt_boxes is None:
|
||||
end = time.time()
|
||||
time_dict['all'] = end - start
|
||||
return None, None, time_dict
|
||||
else:
|
||||
cron_logger.debug("dt_boxes num : {}, elapsed : {}".format(
|
||||
len(dt_boxes), elapse))
|
||||
|
||||
return zip(self.sorted_boxes(dt_boxes), [("",0) for _ in range(len(dt_boxes))])
|
||||
|
||||
def recognize(self, ori_im, box):
|
||||
img_crop = self.get_rotate_crop_image(ori_im, box)
|
||||
|
||||
rec_res, elapse = self.text_recognizer([img_crop])
|
||||
text, score = rec_res[0]
|
||||
if score < self.drop_score:return ""
|
||||
return text
|
||||
|
||||
def __call__(self, img, cls=True):
|
||||
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
|
||||
|
||||
@ -562,6 +590,7 @@ class OCR(object):
|
||||
img_crop_list.append(img_crop)
|
||||
|
||||
rec_res, elapse = self.text_recognizer(img_crop_list)
|
||||
|
||||
time_dict['rec'] = elapse
|
||||
cron_logger.debug("rec_res num : {}, elapsed : {}".format(
|
||||
len(rec_res), elapse))
|
||||
@ -575,6 +604,7 @@ class OCR(object):
|
||||
end = time.time()
|
||||
time_dict['all'] = end - start
|
||||
|
||||
|
||||
#for bno in range(len(img_crop_list)):
|
||||
# print(f"{bno}, {rec_res[bno]}")
|
||||
|
||||
|
@ -41,7 +41,7 @@ class Recognizer(object):
|
||||
if not os.path.exists(model_file_path):
|
||||
raise ValueError("not find model file path {}".format(
|
||||
model_file_path))
|
||||
if ort.get_device() == "GPU":
|
||||
if False and ort.get_device() == "GPU":
|
||||
options = ort.SessionOptions()
|
||||
options.enable_cpu_mem_arena = False
|
||||
self.ort_sess = ort.InferenceSession(model_file_path, options=options, providers=[('CUDAExecutionProvider')])
|
||||
|
@ -2,7 +2,7 @@ import copy
|
||||
import re
|
||||
|
||||
from api.db import ParserType
|
||||
from rag.nlp import huqie, tokenize, tokenize_table, add_positions
|
||||
from rag.nlp import huqie, tokenize, tokenize_table, add_positions, bullets_category, title_frequency
|
||||
from deepdoc.parser import PdfParser
|
||||
from rag.utils import num_tokens_from_string
|
||||
|
||||
@ -14,6 +14,8 @@ class Pdf(PdfParser):
|
||||
|
||||
def __call__(self, filename, binary=None, from_page=0,
|
||||
to_page=100000, zoomin=3, callback=None):
|
||||
from timeit import default_timer as timer
|
||||
start = timer()
|
||||
callback(msg="OCR is running...")
|
||||
self.__images__(
|
||||
filename if not binary else binary,
|
||||
@ -23,19 +25,38 @@ class Pdf(PdfParser):
|
||||
callback
|
||||
)
|
||||
callback(msg="OCR finished.")
|
||||
#for bb in self.boxes:
|
||||
# for b in bb:
|
||||
# print(b)
|
||||
print("OCR:", timer()-start)
|
||||
|
||||
def get_position(bx):
|
||||
poss = []
|
||||
pn = bx["page_number"]
|
||||
top = bx["top"] - self.page_cum_height[pn - 1]
|
||||
bott = bx["bottom"] - self.page_cum_height[pn - 1]
|
||||
poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn-1].size[1]/zoomin)))
|
||||
while bott * zoomin > self.page_images[pn - 1].size[1]:
|
||||
bott -= self.page_images[pn- 1].size[1] / zoomin
|
||||
top = 0
|
||||
pn += 1
|
||||
poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn - 1].size[1] / zoomin)))
|
||||
return poss
|
||||
|
||||
def tag(pn, left, right, top, bottom):
|
||||
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
|
||||
.format(pn, left, right, top, bottom)
|
||||
|
||||
from timeit import default_timer as timer
|
||||
start = timer()
|
||||
self._layouts_rec(zoomin)
|
||||
callback(0.65, "Layout analysis finished.")
|
||||
print("paddle layouts:", timer() - start)
|
||||
self._table_transformer_job(zoomin)
|
||||
callback(0.67, "Table analysis finished.")
|
||||
self._text_merge()
|
||||
self._concat_downward(concat_between_pages=False)
|
||||
tbls = self._extract_table_figure(True, zoomin, True, True)
|
||||
self._naive_vertical_merge()
|
||||
self._filter_forpages()
|
||||
callback(0.68, "Text merging finished")
|
||||
tbls = self._extract_table_figure(True, zoomin, True, True)
|
||||
|
||||
# clean mess
|
||||
for b in self.boxes:
|
||||
@ -44,25 +65,33 @@ class Pdf(PdfParser):
|
||||
# merge chunks with the same bullets
|
||||
self._merge_with_same_bullet()
|
||||
|
||||
# merge title with decent chunk
|
||||
i = 0
|
||||
while i + 1 < len(self.boxes):
|
||||
b = self.boxes[i]
|
||||
if b.get("layoutno","").find("title") < 0:
|
||||
i += 1
|
||||
continue
|
||||
b_ = self.boxes[i + 1]
|
||||
b_["text"] = b["text"] + "\n" + b_["text"]
|
||||
b_["x0"] = min(b["x0"], b_["x0"])
|
||||
b_["x1"] = max(b["x1"], b_["x1"])
|
||||
b_["top"] = b["top"]
|
||||
self.boxes.pop(i)
|
||||
# set pivot using the most frequent type of title,
|
||||
# then merge between 2 pivot
|
||||
bull = bullets_category([b["text"] for b in self.boxes])
|
||||
most_level, levels = title_frequency(bull, [(b["text"], b.get("layout_no","")) for b in self.boxes])
|
||||
assert len(self.boxes) == len(levels)
|
||||
sec_ids = []
|
||||
sid = 0
|
||||
for i, lvl in enumerate(levels):
|
||||
if lvl <= most_level: sid += 1
|
||||
sec_ids.append(sid)
|
||||
#print(lvl, self.boxes[i]["text"], most_level)
|
||||
|
||||
callback(0.8, "Parsing finished")
|
||||
for b in self.boxes: print(b["text"], b.get("layoutno"))
|
||||
sections = [(b["text"], sec_ids[i], get_position(b)) for i, b in enumerate(self.boxes)]
|
||||
for (img, rows), poss in tbls:
|
||||
sections.append((rows[0], -1, [(p[0]+1, p[1], p[2], p[3], p[4]) for p in poss]))
|
||||
|
||||
print(tbls)
|
||||
return [b["text"] + self._line_tag(b, zoomin) for b in self.boxes], tbls
|
||||
chunks = []
|
||||
last_sid = -2
|
||||
for txt, sec_id, poss in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1])):
|
||||
poss = "\t".join([tag(*pos) for pos in poss])
|
||||
if sec_id == last_sid or sec_id == -1:
|
||||
if chunks:
|
||||
chunks[-1] += "\n" + txt + poss
|
||||
continue
|
||||
chunks.append(txt + poss)
|
||||
if sec_id >-1: last_sid = sec_id
|
||||
return chunks
|
||||
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
||||
@ -73,7 +102,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
||||
|
||||
if re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||||
pdf_parser = Pdf()
|
||||
cks, tbls = pdf_parser(filename if not binary else binary,
|
||||
cks = pdf_parser(filename if not binary else binary,
|
||||
from_page=from_page, to_page=to_page, callback=callback)
|
||||
else: raise NotImplementedError("file type not supported yet(pdf supported)")
|
||||
doc = {
|
||||
@ -84,16 +113,15 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
||||
# is it English
|
||||
eng = lang.lower() == "english"#pdf_parser.is_english
|
||||
|
||||
res = tokenize_table(tbls, doc, eng)
|
||||
|
||||
i = 0
|
||||
chunk = []
|
||||
tk_cnt = 0
|
||||
res = []
|
||||
def add_chunk():
|
||||
nonlocal chunk, res, doc, pdf_parser, tk_cnt
|
||||
d = copy.deepcopy(doc)
|
||||
ck = "\n".join(chunk)
|
||||
tokenize(d, pdf_parser.remove_tag(ck), pdf_parser.is_english)
|
||||
tokenize(d, pdf_parser.remove_tag(ck), eng)
|
||||
d["image"], poss = pdf_parser.crop(ck, need_position=True)
|
||||
add_positions(d, poss)
|
||||
res.append(d)
|
||||
@ -101,7 +129,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
||||
tk_cnt = 0
|
||||
|
||||
while i < len(cks):
|
||||
if tk_cnt > 128: add_chunk()
|
||||
if tk_cnt > 256: add_chunk()
|
||||
txt = cks[i]
|
||||
txt_ = pdf_parser.remove_tag(txt)
|
||||
i += 1
|
||||
@ -109,6 +137,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
||||
chunk.append(txt)
|
||||
tk_cnt += cnt
|
||||
if chunk: add_chunk()
|
||||
|
||||
for i, d in enumerate(res):
|
||||
print(d)
|
||||
# d["image"].save(f"./logs/{i}.jpg")
|
||||
@ -117,6 +146,6 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
def dummy(a, b):
|
||||
def dummy(prog=None, msg=""):
|
||||
pass
|
||||
chunk(sys.argv[1], callback=dummy)
|
||||
|
@ -100,7 +100,10 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
||||
print("--", ck)
|
||||
d = copy.deepcopy(doc)
|
||||
if pdf_parser:
|
||||
d["image"], poss = pdf_parser.crop(ck, need_position=True)
|
||||
try:
|
||||
d["image"], poss = pdf_parser.crop(ck, need_position=True)
|
||||
except Exception as e:
|
||||
continue
|
||||
add_positions(d, poss)
|
||||
ck = pdf_parser.remove_tag(ck)
|
||||
tokenize(d, ck, eng)
|
||||
|
@ -1,4 +1,6 @@
|
||||
import random
|
||||
from collections import Counter
|
||||
|
||||
from rag.utils import num_tokens_from_string
|
||||
from . import huqie
|
||||
from nltk import word_tokenize
|
||||
@ -175,6 +177,36 @@ def make_colon_as_title(sections):
|
||||
i += 1
|
||||
|
||||
|
||||
def title_frequency(bull, sections):
|
||||
bullets_size = len(BULLET_PATTERN[bull])
|
||||
levels = [bullets_size+1 for _ in range(len(sections))]
|
||||
if not sections or bull < 0:
|
||||
return bullets_size+1, levels
|
||||
|
||||
for i, (txt, layout) in enumerate(sections):
|
||||
for j, p in enumerate(BULLET_PATTERN[bull]):
|
||||
if re.match(p, txt.strip()):
|
||||
levels[i] = j
|
||||
break
|
||||
else:
|
||||
if re.search(r"(title|head)", layout) and not not_title(txt.split("@")[0]):
|
||||
levels[i] = bullets_size
|
||||
most_level = bullets_size+1
|
||||
for l, c in sorted(Counter(levels).items(), key=lambda x:x[1]*-1):
|
||||
if l <= bullets_size:
|
||||
most_level = l
|
||||
break
|
||||
return most_level, levels
|
||||
|
||||
|
||||
def not_title(txt):
|
||||
if re.match(r"第[零一二三四五六七八九十百0-9]+条", txt):
|
||||
return False
|
||||
if len(txt.split(" ")) > 12 or (txt.find(" ") < 0 and len(txt) >= 32):
|
||||
return True
|
||||
return re.search(r"[,;,。;!!]", txt)
|
||||
|
||||
|
||||
def hierarchical_merge(bull, sections, depth):
|
||||
if not sections or bull < 0:
|
||||
return []
|
||||
@ -185,12 +217,6 @@ def hierarchical_merge(bull, sections, depth):
|
||||
bullets_size = len(BULLET_PATTERN[bull])
|
||||
levels = [[] for _ in range(bullets_size + 2)]
|
||||
|
||||
def not_title(txt):
|
||||
if re.match(r"第[零一二三四五六七八九十百0-9]+条", txt):
|
||||
return False
|
||||
if len(txt.split(" ")) > 12 or (txt.find(" ") < 0 and len(txt) >= 32):
|
||||
return True
|
||||
return re.search(r"[,;,。;!!]", txt)
|
||||
|
||||
for i, (txt, layout) in enumerate(sections):
|
||||
for j, p in enumerate(BULLET_PATTERN[bull]):
|
||||
|
@ -38,7 +38,7 @@ class EsQueryer:
|
||||
"",
|
||||
txt)
|
||||
return re.sub(
|
||||
r"(what|who|how|which|where|why|(is|are|were|was) there) (is|are|were|was)*", "", txt, re.IGNORECASE)
|
||||
r"(what|who|how|which|where|why|(is|are|were|was) there) (is|are|were|was|to)*", "", txt, re.IGNORECASE)
|
||||
|
||||
def question(self, txt, tbl="qa", min_match="60%"):
|
||||
txt = re.sub(
|
||||
@ -50,16 +50,16 @@ class EsQueryer:
|
||||
txt = EsQueryer.rmWWW(txt)
|
||||
|
||||
if not self.isChinese(txt):
|
||||
tks = txt.split(" ")
|
||||
q = []
|
||||
tks = [t for t in txt.split(" ") if t.strip()]
|
||||
q = tks
|
||||
for i in range(1, len(tks)):
|
||||
q.append("\"%s %s\"~2" % (tks[i - 1], tks[i]))
|
||||
q.append("\"%s %s\"^2" % (tks[i - 1], tks[i]))
|
||||
if not q:
|
||||
q.append(txt)
|
||||
return Q("bool",
|
||||
must=Q("query_string", fields=self.flds,
|
||||
type="best_fields", query=" OR ".join(q),
|
||||
boost=1, minimum_should_match="60%")
|
||||
boost=1, minimum_should_match=min_match)
|
||||
), txt.split(" ")
|
||||
|
||||
def needQieqie(tk):
|
||||
@ -147,7 +147,7 @@ class EsQueryer:
|
||||
atks = toDict(atks)
|
||||
btkss = [toDict(tks) for tks in btkss]
|
||||
tksim = [self.similarity(atks, btks) for btks in btkss]
|
||||
return np.array(sims[0]) * vtweight + np.array(tksim) * tkweight, sims[0], tksim
|
||||
return np.array(sims[0]) * vtweight + np.array(tksim) * tkweight, tksim, sims[0]
|
||||
|
||||
def similarity(self, qtwt, dtwt):
|
||||
if isinstance(dtwt, type("")):
|
||||
|
@ -119,6 +119,7 @@ class Dealer:
|
||||
s["knn"]["filter"] = bqry.to_dict()
|
||||
s["knn"]["similarity"] = 0.17
|
||||
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
|
||||
es_logger.info("【Q】: {}".format(json.dumps(s)))
|
||||
|
||||
kwds = set([])
|
||||
for k in keywords:
|
||||
|
Loading…
x
Reference in New Issue
Block a user