mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-14 13:26:09 +08:00
Feat: Support tool calling in Generate component (#7572)
### What problem does this PR solve? Hello, our use case requires LLM agent to invoke some tools, so I made a simple implementation here. This PR does two things: 1. A simple plugin mechanism based on `pluginlib`: This mechanism lives in the `plugin` directory. It will only load plugins from `plugin/embedded_plugins` for now. A sample plugin `bad_calculator.py` is placed in `plugin/embedded_plugins/llm_tools`, it accepts two numbers `a` and `b`, then give a wrong result `a + b + 100`. In the future, it can load plugins from external location with little code change. Plugins are divided into different types. The only plugin type supported in this PR is `llm_tools`, which must implement the `LLMToolPlugin` class in the `plugin/llm_tool_plugin.py`. More plugin types can be added in the future. 2. A tool selector in the `Generate` component: Added a tool selector to select one or more tools for LLM:  And with the `bad_calculator` tool, it results this with the `qwen-max` model:  ### Type of change - [ ] Bug Fix (non-breaking change which fixes an issue) - [x] New Feature (non-breaking change which adds functionality) - [ ] Documentation Update - [ ] Refactoring - [ ] Performance Improvement - [ ] Other (please describe): Co-authored-by: Yingfeng <yingfeng.zhang@gmail.com>
This commit is contained in:
parent
cb26564d50
commit
a1f06a4fdc
@ -199,6 +199,7 @@ COPY graphrag graphrag
|
||||
COPY agentic_reasoning agentic_reasoning
|
||||
COPY pyproject.toml uv.lock ./
|
||||
COPY mcp mcp
|
||||
COPY plugin plugin
|
||||
|
||||
COPY docker/service_conf.yaml.template ./conf/service_conf.yaml.template
|
||||
COPY docker/entrypoint.sh ./
|
||||
|
@ -33,6 +33,7 @@ ADD ./rag ./rag
|
||||
ADD ./requirements.txt ./requirements.txt
|
||||
ADD ./agent ./agent
|
||||
ADD ./graphrag ./graphrag
|
||||
ADD ./plugin ./plugin
|
||||
|
||||
RUN dnf install -y openmpi openmpi-devel python3-openmpi
|
||||
ENV C_INCLUDE_PATH /usr/include/openmpi-x86_64:$C_INCLUDE_PATH
|
||||
|
@ -16,15 +16,29 @@
|
||||
import json
|
||||
import re
|
||||
from functools import partial
|
||||
from typing import Any
|
||||
import pandas as pd
|
||||
from api.db import LLMType
|
||||
from api.db.services.conversation_service import structure_answer
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from api import settings
|
||||
from agent.component.base import ComponentBase, ComponentParamBase
|
||||
from plugin import GlobalPluginManager
|
||||
from plugin.llm_tool_plugin import llm_tool_metadata_to_openai_tool
|
||||
from rag.llm.chat_model import ToolCallSession
|
||||
from rag.prompts import message_fit_in
|
||||
|
||||
|
||||
class LLMToolPluginCallSession(ToolCallSession):
|
||||
def tool_call(self, name: str, arguments: dict[str, Any]) -> str:
|
||||
tool = GlobalPluginManager.get_llm_tool_by_name(name)
|
||||
|
||||
if tool is None:
|
||||
raise ValueError(f"LLM tool {name} does not exist")
|
||||
|
||||
return tool().invoke(**arguments)
|
||||
|
||||
|
||||
class GenerateParam(ComponentParamBase):
|
||||
"""
|
||||
Define the Generate component parameters.
|
||||
@ -41,6 +55,7 @@ class GenerateParam(ComponentParamBase):
|
||||
self.frequency_penalty = 0
|
||||
self.cite = True
|
||||
self.parameters = []
|
||||
self.llm_enabled_tools = []
|
||||
|
||||
def check(self):
|
||||
self.check_decimal_float(self.temperature, "[Generate] Temperature")
|
||||
@ -133,6 +148,15 @@ class Generate(ComponentBase):
|
||||
|
||||
def _run(self, history, **kwargs):
|
||||
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
|
||||
|
||||
if len(self._param.llm_enabled_tools) > 0:
|
||||
tools = GlobalPluginManager.get_llm_tools_by_names(self._param.llm_enabled_tools)
|
||||
|
||||
chat_mdl.bind_tools(
|
||||
LLMToolPluginCallSession(),
|
||||
[llm_tool_metadata_to_openai_tool(t.get_metadata()) for t in tools]
|
||||
)
|
||||
|
||||
prompt = self._param.prompt
|
||||
|
||||
retrieval_res = []
|
||||
|
12
api/apps/plugin_app.py
Normal file
12
api/apps/plugin_app.py
Normal file
@ -0,0 +1,12 @@
|
||||
from flask import Response
|
||||
from flask_login import login_required
|
||||
from api.utils.api_utils import get_json_result
|
||||
from plugin import GlobalPluginManager
|
||||
|
||||
@manager.route('/llm_tools', methods=['GET']) # noqa: F821
|
||||
@login_required
|
||||
def llm_tools() -> Response:
|
||||
tools = GlobalPluginManager.get_llm_tools()
|
||||
tools_metadata = [t.get_metadata() for t in tools]
|
||||
|
||||
return get_json_result(data=tools_metadata)
|
@ -226,6 +226,7 @@ class LLMBundle:
|
||||
|
||||
def bind_tools(self, toolcall_session, tools):
|
||||
if not self.is_tools:
|
||||
logging.warning(f"Model {self.llm_name} does not support tool call, but you have assigned one or more tools to it!")
|
||||
return
|
||||
self.mdl.bind_tools(toolcall_session, tools)
|
||||
|
||||
|
@ -19,6 +19,7 @@
|
||||
# beartype_all(conf=BeartypeConf(violation_type=UserWarning)) # <-- emit warnings from all code
|
||||
|
||||
from api.utils.log_utils import initRootLogger
|
||||
from plugin import GlobalPluginManager
|
||||
initRootLogger("ragflow_server")
|
||||
|
||||
import logging
|
||||
@ -119,6 +120,8 @@ if __name__ == '__main__':
|
||||
RuntimeConfig.init_env()
|
||||
RuntimeConfig.init_config(JOB_SERVER_HOST=settings.HOST_IP, HTTP_PORT=settings.HOST_PORT)
|
||||
|
||||
GlobalPluginManager.load_plugins()
|
||||
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
|
97
plugin/README.md
Normal file
97
plugin/README.md
Normal file
@ -0,0 +1,97 @@
|
||||
# Plugins
|
||||
|
||||
This directory contains the plugin mechanism for RAGFlow.
|
||||
|
||||
RAGFlow will load plugins from `embedded_plugins` subdirectory recursively.
|
||||
|
||||
## Supported plugin types
|
||||
|
||||
Currently, the only supported plugin type is `llm_tools`.
|
||||
|
||||
- `llm_tools`: A tool for LLM to call.
|
||||
|
||||
## How to add a plugin
|
||||
|
||||
Add a LLM tool plugin is simple: create a plugin file, put a class inherits the `LLMToolPlugin` class in it, then implement the `get_metadata` and the `invoke` methods.
|
||||
|
||||
- `get_metadata` method: This method returns a `LLMToolMetadata` object, which contains the description of this tool.
|
||||
The description will be provided to LLM, and the RAGFlow web frontend for displaying.
|
||||
|
||||
- `invoke` method: This method accepts parameters generated by LLM, and return a `str` containing the tool execution result.
|
||||
All the execution logic of this tool should go into this method.
|
||||
|
||||
When you start RAGFlow, you can see your plugin was loaded in the log:
|
||||
|
||||
```
|
||||
2025-05-15 19:29:08,959 INFO 34670 Recursively importing plugins from path `/some-path/ragflow/plugin/embedded_plugins`
|
||||
2025-05-15 19:29:08,960 INFO 34670 Loaded llm_tools plugin BadCalculatorPlugin version 1.0.0
|
||||
```
|
||||
|
||||
Or it may contain some errors for you to fix your plugin.
|
||||
|
||||
### Demo
|
||||
|
||||
We will demonstrate how to add a plugin with a calculator tool which will give wrong answers.
|
||||
|
||||
First, create a plugin file `bad_calculator.py` under the `embedded_plugins/llm_tools` directory.
|
||||
|
||||
Then, we create a `BadCalculatorPlugin` class, extending the `LLMToolPlugin` base class:
|
||||
|
||||
```python
|
||||
class BadCalculatorPlugin(LLMToolPlugin):
|
||||
_version_ = "1.0.0"
|
||||
```
|
||||
|
||||
The `_version_` field is required, which specifies the version of the plugin.
|
||||
|
||||
Our calculator has two numbers `a` and `b` as inputs, so we add a `invoke` method to our `BadCalculatorPlugin` class:
|
||||
|
||||
```python
|
||||
def invoke(self, a: int, b: int) -> str:
|
||||
return str(a + b + 100)
|
||||
```
|
||||
|
||||
The `invoke` method will be called by LLM. It can have many parameters, but the return type must be a `str`.
|
||||
|
||||
Finally, we have to add a `get_metadata` method, to tell LLM how to use our `bad_calculator`:
|
||||
|
||||
```python
|
||||
@classmethod
|
||||
def get_metadata(cls) -> LLMToolMetadata:
|
||||
return {
|
||||
# Name of this tool, providing to LLM
|
||||
"name": "bad_calculator",
|
||||
# Display name of this tool, providing to RAGFlow frontend
|
||||
"displayName": "$t:bad_calculator.name",
|
||||
# Description of the usage of this tool, providing to LLM
|
||||
"description": "A tool to calculate the sum of two numbers (will give wrong answer)",
|
||||
# Description of this tool, providing to RAGFlow frontend
|
||||
"displayDescription": "$t:bad_calculator.description",
|
||||
# Parameters of this tool
|
||||
"parameters": {
|
||||
# The first parameter - a
|
||||
"a": {
|
||||
# Parameter type, options are: number, string, or whatever the LLM can recognise
|
||||
"type": "number",
|
||||
# Description of this parameter, providing to LLM
|
||||
"description": "The first number",
|
||||
# Description of this parameter, provding to RAGFlow frontend
|
||||
"displayDescription": "$t:bad_calculator.params.a",
|
||||
# Whether this parameter is required
|
||||
"required": True
|
||||
},
|
||||
# The second parameter - b
|
||||
"b": {
|
||||
"type": "number",
|
||||
"description": "The second number",
|
||||
"displayDescription": "$t:bad_calculator.params.b",
|
||||
"required": True
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
The `get_metadata` method is a `classmethod`. It will provide the description of this tool to LLM.
|
||||
|
||||
The fields starts with `display` can use a special notation: `$t:xxx`, which will use the i18n mechanism in the RAGFlow frontend, getting text from the `llmTools` category. The frontend will display what you put here if you don't use this notation.
|
||||
|
||||
Now our tool is ready. You can select it in the `Generate` component and try it out.
|
98
plugin/README_zh.md
Normal file
98
plugin/README_zh.md
Normal file
@ -0,0 +1,98 @@
|
||||
# 插件
|
||||
|
||||
这个文件夹包含了RAGFlow的插件机制。
|
||||
|
||||
RAGFlow将会从`embedded_plugins`子文件夹中递归加载所有的插件。
|
||||
|
||||
## 支持的插件类型
|
||||
|
||||
目前,唯一支持的插件类型是`llm_tools`。
|
||||
|
||||
- `llm_tools`:用于供LLM进行调用的工具。
|
||||
|
||||
## 如何添加一个插件
|
||||
|
||||
添加一个LLM工具插件是很简单的:创建一个插件文件,向其中放一个继承自`LLMToolPlugin`的类,再实现它的`get_metadata`和`invoke`方法即可。
|
||||
|
||||
- `get_metadata`方法:这个方法返回一个`LLMToolMetadata`对象,其中包含了对这个工具的描述。
|
||||
这些描述信息将被提供给LLM进行调用,和RAGFlow的Web前端用作展示。
|
||||
|
||||
- `invoke`方法:这个方法接受LLM生成的参数,并且返回一个`str`对象,其中包含了这个工具的执行结果。
|
||||
这个工具的所有执行逻辑都应当放到这个方法里。
|
||||
|
||||
当你启动RAGFlow时,你会在日志中看见你的插件被加载了:
|
||||
|
||||
```
|
||||
2025-05-15 19:29:08,959 INFO 34670 Recursively importing plugins from path `/some-path/ragflow/plugin/embedded_plugins`
|
||||
2025-05-15 19:29:08,960 INFO 34670 Loaded llm_tools plugin BadCalculatorPlugin version 1.0.0
|
||||
```
|
||||
|
||||
也可能会报错,这时就需要根据报错对你的插件进行修复。
|
||||
|
||||
### 示例
|
||||
|
||||
我们将会添加一个会给出错误答案的计算器工具,来演示添加插件的过程。
|
||||
|
||||
首先,在`embedded_plugins/llm_tools`文件夹下创建一个插件文件`bad_calculator.py`。
|
||||
|
||||
接下来,我们创建一个`BadCalculatorPlugin`类,继承基类`LLMToolPlugin`:
|
||||
|
||||
```python
|
||||
class BadCalculatorPlugin(LLMToolPlugin):
|
||||
_version_ = "1.0.0"
|
||||
```
|
||||
|
||||
`_version_`字段是必填的,用于指定这个插件的版本号。
|
||||
|
||||
我们的计算器拥有两个输入字段`a`和`b`,所以我们添加如下的`invoke`方法到`BadCalculatorPlugin`类中:
|
||||
|
||||
```python
|
||||
def invoke(self, a: int, b: int) -> str:
|
||||
return str(a + b + 100)
|
||||
```
|
||||
|
||||
`invoke`方法将会被LLM所调用。这个方法可以有许多参数,但它必须返回一个`str`。
|
||||
|
||||
最后,我们需要添加一个`get_metadata`方法,来告诉LLM怎样使用我们的`bad_calculator`工具:
|
||||
|
||||
```python
|
||||
@classmethod
|
||||
def get_metadata(cls) -> LLMToolMetadata:
|
||||
return {
|
||||
# 这个工具的名称,会提供给LLM
|
||||
"name": "bad_calculator",
|
||||
# 这个工具的展示名称,会提供给RAGFlow的Web前端
|
||||
"displayName": "$t:bad_calculator.name",
|
||||
# 这个工具的用法描述,会提供给LLM
|
||||
"description": "A tool to calculate the sum of two numbers (will give wrong answer)",
|
||||
# 这个工具的描述,会提供给RAGFlow的Web前端
|
||||
"displayDescription": "$t:bad_calculator.description",
|
||||
# 这个工具的参数
|
||||
"parameters": {
|
||||
# 第一个参数 - a
|
||||
"a": {
|
||||
# 参数类型,选项为:number, string, 或者LLM可以识别的任何类型
|
||||
"type": "number",
|
||||
# 这个参数的描述,会提供给LLM
|
||||
"description": "The first number",
|
||||
# 这个参数的描述,会提供给RAGFlow的Web前端
|
||||
"displayDescription": "$t:bad_calculator.params.a",
|
||||
# 这个参数是否是必填的
|
||||
"required": True
|
||||
},
|
||||
# 第二个参数 - b
|
||||
"b": {
|
||||
"type": "number",
|
||||
"description": "The second number",
|
||||
"displayDescription": "$t:bad_calculator.params.b",
|
||||
"required": True
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
`get_metadata`方法是一个`classmethod`。它会把这个工具的描述提供给LLM。
|
||||
|
||||
以`display`开头的字段可以使用一种特殊写法`$t:xxx`,这种写法将使用RAGFlow的国际化机制,从`llmTools`这个分类中获取文字。如果你不使用这种写法,那么前端将会显示此处的原始内容。
|
||||
|
||||
现在,我们的工具已经做好了,你可以在`生成回答`组件中选择这个工具来尝试一下。
|
||||
|
3
plugin/__init__.py
Normal file
3
plugin/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
from .plugin_manager import PluginManager
|
||||
|
||||
GlobalPluginManager = PluginManager()
|
1
plugin/common.py
Normal file
1
plugin/common.py
Normal file
@ -0,0 +1 @@
|
||||
PLUGIN_TYPE_LLM_TOOLS = "llm_tools"
|
37
plugin/embedded_plugins/llm_tools/bad_calculator.py
Normal file
37
plugin/embedded_plugins/llm_tools/bad_calculator.py
Normal file
@ -0,0 +1,37 @@
|
||||
import logging
|
||||
from plugin.llm_tool_plugin import LLMToolMetadata, LLMToolPlugin
|
||||
|
||||
|
||||
class BadCalculatorPlugin(LLMToolPlugin):
|
||||
"""
|
||||
A sample LLM tool plugin, will add two numbers with 100.
|
||||
It only present for demo purpose. Do not use it in production.
|
||||
"""
|
||||
_version_ = "1.0.0"
|
||||
|
||||
@classmethod
|
||||
def get_metadata(cls) -> LLMToolMetadata:
|
||||
return {
|
||||
"name": "bad_calculator",
|
||||
"displayName": "$t:bad_calculator.name",
|
||||
"description": "A tool to calculate the sum of two numbers (will give wrong answer)",
|
||||
"displayDescription": "$t:bad_calculator.description",
|
||||
"parameters": {
|
||||
"a": {
|
||||
"type": "number",
|
||||
"description": "The first number",
|
||||
"displayDescription": "$t:bad_calculator.params.a",
|
||||
"required": True
|
||||
},
|
||||
"b": {
|
||||
"type": "number",
|
||||
"description": "The second number",
|
||||
"displayDescription": "$t:bad_calculator.params.b",
|
||||
"required": True
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
def invoke(self, a: int, b: int) -> str:
|
||||
logging.info(f"Bad calculator tool was called with arguments {a} and {b}")
|
||||
return str(a + b + 100)
|
51
plugin/llm_tool_plugin.py
Normal file
51
plugin/llm_tool_plugin.py
Normal file
@ -0,0 +1,51 @@
|
||||
from typing import Any, TypedDict
|
||||
import pluginlib
|
||||
|
||||
from .common import PLUGIN_TYPE_LLM_TOOLS
|
||||
|
||||
|
||||
class LLMToolParameter(TypedDict):
|
||||
type: str
|
||||
description: str
|
||||
displayDescription: str
|
||||
required: bool
|
||||
|
||||
|
||||
class LLMToolMetadata(TypedDict):
|
||||
name: str
|
||||
displayName: str
|
||||
description: str
|
||||
displayDescription: str
|
||||
parameters: dict[str, LLMToolParameter]
|
||||
|
||||
|
||||
@pluginlib.Parent(PLUGIN_TYPE_LLM_TOOLS)
|
||||
class LLMToolPlugin:
|
||||
@classmethod
|
||||
@pluginlib.abstractmethod
|
||||
def get_metadata(cls) -> LLMToolMetadata:
|
||||
pass
|
||||
|
||||
def invoke(self, **kwargs) -> str:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def llm_tool_metadata_to_openai_tool(llm_tool_metadata: LLMToolMetadata) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": llm_tool_metadata["name"],
|
||||
"description": llm_tool_metadata["description"],
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
k: {
|
||||
"type": p["type"],
|
||||
"description": p["description"]
|
||||
}
|
||||
for k, p in llm_tool_metadata["parameters"].items()
|
||||
},
|
||||
"required": [k for k, p in llm_tool_metadata["parameters"].items() if p["required"]]
|
||||
}
|
||||
}
|
||||
}
|
45
plugin/plugin_manager.py
Normal file
45
plugin/plugin_manager.py
Normal file
@ -0,0 +1,45 @@
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
import pluginlib
|
||||
|
||||
from .common import PLUGIN_TYPE_LLM_TOOLS
|
||||
|
||||
from .llm_tool_plugin import LLMToolPlugin
|
||||
|
||||
|
||||
class PluginManager:
|
||||
_llm_tool_plugins: dict[str, LLMToolPlugin]
|
||||
|
||||
def __init__(self) -> None:
|
||||
self._llm_tool_plugins = {}
|
||||
|
||||
def load_plugins(self) -> None:
|
||||
loader = pluginlib.PluginLoader(
|
||||
paths=[str(Path(os.path.dirname(__file__), "embedded_plugins"))]
|
||||
)
|
||||
|
||||
for type, plugins in loader.plugins.items():
|
||||
for name, plugin in plugins.items():
|
||||
logging.info(f"Loaded {type} plugin {name} version {plugin.version}")
|
||||
|
||||
if type == PLUGIN_TYPE_LLM_TOOLS:
|
||||
metadata = plugin.get_metadata()
|
||||
self._llm_tool_plugins[metadata["name"]] = plugin
|
||||
|
||||
def get_llm_tools(self) -> list[LLMToolPlugin]:
|
||||
return list(self._llm_tool_plugins.values())
|
||||
|
||||
def get_llm_tool_by_name(self, name: str) -> LLMToolPlugin | None:
|
||||
return self._llm_tool_plugins.get(name)
|
||||
|
||||
def get_llm_tools_by_names(self, tool_names: list[str]) -> list[LLMToolPlugin]:
|
||||
results = []
|
||||
|
||||
for name in tool_names:
|
||||
plugin = self._llm_tool_plugins.get(name)
|
||||
|
||||
if plugin is not None:
|
||||
results.append(plugin)
|
||||
|
||||
return results
|
@ -125,7 +125,8 @@ dependencies = [
|
||||
"langfuse>=2.60.0",
|
||||
"debugpy>=1.8.13",
|
||||
"mcp>=1.6.0",
|
||||
"opensearch-py==2.7.1"
|
||||
"opensearch-py==2.7.1",
|
||||
"pluginlib==0.9.4",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
|
@ -21,6 +21,7 @@ import random
|
||||
import re
|
||||
import time
|
||||
from abc import ABC
|
||||
from typing import Any, Protocol
|
||||
|
||||
import openai
|
||||
import requests
|
||||
@ -51,6 +52,10 @@ LENGTH_NOTIFICATION_CN = "······\n由于大模型的上下文窗口大小
|
||||
LENGTH_NOTIFICATION_EN = "...\nThe answer is truncated by your chosen LLM due to its limitation on context length."
|
||||
|
||||
|
||||
class ToolCallSession(Protocol):
|
||||
def tool_call(self, name: str, arguments: dict[str, Any]) -> str: ...
|
||||
|
||||
|
||||
class Base(ABC):
|
||||
def __init__(self, key, model_name, base_url):
|
||||
timeout = int(os.environ.get("LM_TIMEOUT_SECONDS", 600))
|
||||
@ -251,10 +256,8 @@ class Base(ABC):
|
||||
|
||||
if index not in final_tool_calls:
|
||||
final_tool_calls[index] = tool_call
|
||||
|
||||
final_tool_calls[index].function.arguments += tool_call.function.arguments
|
||||
if resp.choices[0].finish_reason != "stop":
|
||||
continue
|
||||
else:
|
||||
final_tool_calls[index].function.arguments += tool_call.function.arguments
|
||||
else:
|
||||
if not resp.choices:
|
||||
continue
|
||||
@ -276,58 +279,57 @@ class Base(ABC):
|
||||
else:
|
||||
total_tokens += tol
|
||||
|
||||
finish_reason = resp.choices[0].finish_reason
|
||||
if finish_reason == "tool_calls" and final_tool_calls:
|
||||
for tool_call in final_tool_calls.values():
|
||||
name = tool_call.function.name
|
||||
try:
|
||||
if name == "get_current_weather":
|
||||
args = json.loads('{"location":"Shanghai"}')
|
||||
else:
|
||||
args = json.loads(tool_call.function.arguments)
|
||||
except Exception:
|
||||
continue
|
||||
# args = json.loads(tool_call.function.arguments)
|
||||
tool_response = self.toolcall_session.tool_call(name, args)
|
||||
history.append(
|
||||
{
|
||||
"role": "assistant",
|
||||
"refusal": "",
|
||||
"content": "",
|
||||
"audio": "",
|
||||
"function_call": "",
|
||||
"tool_calls": [
|
||||
{
|
||||
"index": tool_call.index,
|
||||
"id": tool_call.id,
|
||||
"function": tool_call.function,
|
||||
"type": "function",
|
||||
finish_reason = resp.choices[0].finish_reason
|
||||
if finish_reason == "tool_calls" and final_tool_calls:
|
||||
for tool_call in final_tool_calls.values():
|
||||
name = tool_call.function.name
|
||||
try:
|
||||
args = json.loads(tool_call.function.arguments)
|
||||
except Exception as e:
|
||||
logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}")
|
||||
yield ans + "\n**ERROR**: " + str(e)
|
||||
finish_completion = True
|
||||
break
|
||||
|
||||
tool_response = self.toolcall_session.tool_call(name, args)
|
||||
history.append(
|
||||
{
|
||||
"role": "assistant",
|
||||
"tool_calls": [
|
||||
{
|
||||
"index": tool_call.index,
|
||||
"id": tool_call.id,
|
||||
"function": {
|
||||
"name": tool_call.function.name,
|
||||
"arguments": tool_call.function.arguments,
|
||||
},
|
||||
],
|
||||
}
|
||||
)
|
||||
# if tool_response.choices[0].finish_reason == "length":
|
||||
# if is_chinese(ans):
|
||||
# ans += LENGTH_NOTIFICATION_CN
|
||||
# else:
|
||||
# ans += LENGTH_NOTIFICATION_EN
|
||||
# return ans, total_tokens + self.total_token_count(tool_response)
|
||||
history.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_response)})
|
||||
final_tool_calls = {}
|
||||
response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, tools=tools, **gen_conf)
|
||||
continue
|
||||
if finish_reason == "length":
|
||||
if is_chinese(ans):
|
||||
ans += LENGTH_NOTIFICATION_CN
|
||||
else:
|
||||
ans += LENGTH_NOTIFICATION_EN
|
||||
return ans, total_tokens + self.total_token_count(resp)
|
||||
if finish_reason == "stop":
|
||||
finish_completion = True
|
||||
yield ans
|
||||
break
|
||||
yield ans
|
||||
"type": "function",
|
||||
},
|
||||
],
|
||||
}
|
||||
)
|
||||
# if tool_response.choices[0].finish_reason == "length":
|
||||
# if is_chinese(ans):
|
||||
# ans += LENGTH_NOTIFICATION_CN
|
||||
# else:
|
||||
# ans += LENGTH_NOTIFICATION_EN
|
||||
# return ans, total_tokens + self.total_token_count(tool_response)
|
||||
history.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_response)})
|
||||
final_tool_calls = {}
|
||||
response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, tools=tools, **gen_conf)
|
||||
continue
|
||||
if finish_reason == "length":
|
||||
if is_chinese(ans):
|
||||
ans += LENGTH_NOTIFICATION_CN
|
||||
else:
|
||||
ans += LENGTH_NOTIFICATION_EN
|
||||
return ans, total_tokens
|
||||
if finish_reason == "stop":
|
||||
finish_completion = True
|
||||
yield ans
|
||||
break
|
||||
yield ans
|
||||
continue
|
||||
|
||||
except openai.APIError as e:
|
||||
yield ans + "\n**ERROR**: " + str(e)
|
||||
@ -854,6 +856,14 @@ class ZhipuChat(Base):
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_with_tools(self, system: str, history: list, gen_conf: dict):
|
||||
if "presence_penalty" in gen_conf:
|
||||
del gen_conf["presence_penalty"]
|
||||
if "frequency_penalty" in gen_conf:
|
||||
del gen_conf["frequency_penalty"]
|
||||
|
||||
return super().chat_with_tools(system, history, gen_conf)
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf):
|
||||
if system:
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
@ -886,6 +896,14 @@ class ZhipuChat(Base):
|
||||
|
||||
yield tk_count
|
||||
|
||||
def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict):
|
||||
if "presence_penalty" in gen_conf:
|
||||
del gen_conf["presence_penalty"]
|
||||
if "frequency_penalty" in gen_conf:
|
||||
del gen_conf["frequency_penalty"]
|
||||
|
||||
return super().chat_streamly_with_tools(system, history, gen_conf)
|
||||
|
||||
|
||||
class OllamaChat(Base):
|
||||
def __init__(self, key, model_name, **kwargs):
|
||||
|
14
uv.lock
generated
14
uv.lock
generated
@ -3952,6 +3952,18 @@ wheels = [
|
||||
{ url = "https://mirrors.aliyun.com/pypi/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl", hash = "sha256:44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pluginlib"
|
||||
version = "0.9.4"
|
||||
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
|
||||
dependencies = [
|
||||
{ name = "setuptools" },
|
||||
]
|
||||
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/58/38/ca974ba2d8ccc7954d8ccb0394cce184ac6269bd1fbfe06f70a0da3c8946/pluginlib-0.9.4.tar.gz", hash = "sha256:88727037138f759a3952f6391ae3751536f04ad8be6023607620ea49695a3a83" }
|
||||
wheels = [
|
||||
{ url = "https://mirrors.aliyun.com/pypi/packages/b0/b5/c869b3d2ed1613afeb02c635be11f5d35fa5b2b665f4d059cfe5b8e82941/pluginlib-0.9.4-py2.py3-none-any.whl", hash = "sha256:d4cfb7d74a6d2454e256b6512fbc4bc2dd7620cb7764feb67331ef56ce4b33f2" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "polars-lts-cpu"
|
||||
version = "1.9.0"
|
||||
@ -4872,6 +4884,7 @@ dependencies = [
|
||||
{ name = "pdfplumber" },
|
||||
{ name = "peewee" },
|
||||
{ name = "pillow" },
|
||||
{ name = "pluginlib" },
|
||||
{ name = "protobuf" },
|
||||
{ name = "psycopg2-binary" },
|
||||
{ name = "pyclipper" },
|
||||
@ -5009,6 +5022,7 @@ requires-dist = [
|
||||
{ name = "pdfplumber", specifier = "==0.10.4" },
|
||||
{ name = "peewee", specifier = "==3.17.1" },
|
||||
{ name = "pillow", specifier = "==10.4.0" },
|
||||
{ name = "pluginlib", specifier = "==0.9.4" },
|
||||
{ name = "protobuf", specifier = "==5.27.2" },
|
||||
{ name = "psycopg2-binary", specifier = "==2.9.9" },
|
||||
{ name = "pyclipper", specifier = "==1.3.0.post5" },
|
||||
|
@ -11,19 +11,31 @@ import { Select, SelectTrigger, SelectValue } from '../ui/select';
|
||||
interface IProps {
|
||||
id?: string;
|
||||
value?: string;
|
||||
onChange?: (value: string) => void;
|
||||
onInitialValue?: (value: string, option: any) => void;
|
||||
onChange?: (value: string, option: any) => void;
|
||||
disabled?: boolean;
|
||||
}
|
||||
|
||||
const LLMSelect = ({ id, value, onChange, disabled }: IProps) => {
|
||||
const LLMSelect = ({ id, value, onInitialValue, onChange, disabled }: IProps) => {
|
||||
const modelOptions = useComposeLlmOptionsByModelTypes([
|
||||
LlmModelType.Chat,
|
||||
LlmModelType.Image2text,
|
||||
]);
|
||||
|
||||
if (onInitialValue && value) {
|
||||
for (const modelOption of modelOptions) {
|
||||
for (const option of modelOption.options) {
|
||||
if (option.value === value) {
|
||||
onInitialValue(value, option);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const content = (
|
||||
<div style={{ width: 400 }}>
|
||||
<LlmSettingItems
|
||||
<LlmSettingItems onChange={onChange}
|
||||
formItemLayout={{ labelCol: { span: 10 }, wrapperCol: { span: 14 } }}
|
||||
></LlmSettingItems>
|
||||
</div>
|
||||
|
@ -16,9 +16,10 @@ interface IProps {
|
||||
prefix?: string;
|
||||
formItemLayout?: any;
|
||||
handleParametersChange?(value: ModelVariableType): void;
|
||||
onChange?(value: string, option: any): void;
|
||||
}
|
||||
|
||||
const LlmSettingItems = ({ prefix, formItemLayout = {} }: IProps) => {
|
||||
const LlmSettingItems = ({ prefix, formItemLayout = {}, onChange }: IProps) => {
|
||||
const form = Form.useFormInstance();
|
||||
const { t } = useTranslate('chat');
|
||||
const parameterOptions = Object.values(ModelVariableType).map((x) => ({
|
||||
@ -58,6 +59,7 @@ const LlmSettingItems = ({ prefix, formItemLayout = {} }: IProps) => {
|
||||
options={modelOptions}
|
||||
showSearch
|
||||
popupMatchSelectWidth={false}
|
||||
onChange={onChange}
|
||||
/>
|
||||
</Form.Item>
|
||||
<div className="border rounded-md">
|
||||
|
51
web/src/components/llm-tools-select.tsx
Normal file
51
web/src/components/llm-tools-select.tsx
Normal file
@ -0,0 +1,51 @@
|
||||
import { useTranslate } from '@/hooks/common-hooks';
|
||||
import { useLlmToolsList } from '@/hooks/plugin-hooks';
|
||||
import { Select, Space } from 'antd';
|
||||
|
||||
interface IProps {
|
||||
value?: string;
|
||||
onChange?: (value: string) => void;
|
||||
disabled?: boolean;
|
||||
}
|
||||
|
||||
const LLMToolsSelect = ({ value, onChange, disabled }: IProps) => {
|
||||
const { t } = useTranslate("llmTools");
|
||||
const tools = useLlmToolsList();
|
||||
|
||||
function wrapTranslation(text: string): string {
|
||||
if (!text) {
|
||||
return text;
|
||||
}
|
||||
|
||||
if (text.startsWith("$t:")) {
|
||||
return t(text.substring(3));
|
||||
}
|
||||
|
||||
return text;
|
||||
}
|
||||
|
||||
const toolOptions = tools.map(t => ({
|
||||
label: wrapTranslation(t.displayName),
|
||||
description: wrapTranslation(t.displayDescription),
|
||||
value: t.name,
|
||||
title: wrapTranslation(t.displayDescription),
|
||||
}));
|
||||
|
||||
return (
|
||||
<Select
|
||||
mode="multiple"
|
||||
options={toolOptions}
|
||||
optionRender={option => (
|
||||
<Space size="large">
|
||||
{option.label}
|
||||
{option.data.description}
|
||||
</Space>
|
||||
)}
|
||||
onChange={onChange}
|
||||
value={value}
|
||||
disabled={disabled}
|
||||
></Select>
|
||||
);
|
||||
};
|
||||
|
||||
export default LLMToolsSelect;
|
@ -71,6 +71,7 @@ function buildLlmOptionsWithIcon(x: IThirdOAIModel) {
|
||||
),
|
||||
value: `${x.llm_name}@${x.fid}`,
|
||||
disabled: !x.available,
|
||||
is_tools: x.is_tools,
|
||||
};
|
||||
}
|
||||
|
||||
@ -142,7 +143,7 @@ export const useComposeLlmOptionsByModelTypes = (
|
||||
|
||||
return modelTypes.reduce<
|
||||
(DefaultOptionType & {
|
||||
options: { label: JSX.Element; value: string; disabled: boolean }[];
|
||||
options: { label: JSX.Element; value: string; disabled: boolean; is_tools: boolean }[];
|
||||
})[]
|
||||
>((pre, cur) => {
|
||||
const options = allOptions[cur];
|
||||
|
17
web/src/hooks/plugin-hooks.tsx
Normal file
17
web/src/hooks/plugin-hooks.tsx
Normal file
@ -0,0 +1,17 @@
|
||||
import { ILLMTools } from '@/interfaces/database/plugin';
|
||||
import pluginService from '@/services/plugin-service';
|
||||
import { useQuery } from '@tanstack/react-query';
|
||||
|
||||
export const useLlmToolsList = (): ILLMTools => {
|
||||
const { data } = useQuery({
|
||||
queryKey: ['llmTools'],
|
||||
initialData: [],
|
||||
queryFn: async () => {
|
||||
const { data } = await pluginService.getLlmTools();
|
||||
|
||||
return data?.data ?? [];
|
||||
},
|
||||
});
|
||||
|
||||
return data;
|
||||
};
|
@ -13,6 +13,7 @@ export interface IThirdOAIModel {
|
||||
update_time: number;
|
||||
tenant_id?: string;
|
||||
tenant_name?: string;
|
||||
is_tools: boolean;
|
||||
}
|
||||
|
||||
export type IThirdOAIModelCollection = Record<string, IThirdOAIModel[]>;
|
||||
|
13
web/src/interfaces/database/plugin.ts
Normal file
13
web/src/interfaces/database/plugin.ts
Normal file
@ -0,0 +1,13 @@
|
||||
export type ILLMTools = ILLMToolMetadata[];
|
||||
|
||||
export interface ILLMToolMetadata {
|
||||
name: string;
|
||||
displayName: string;
|
||||
displayDescription: string;
|
||||
parameters: Map<string, ILLMToolParameter>;
|
||||
}
|
||||
|
||||
export interface ILLMToolParameter {
|
||||
type: string;
|
||||
displayDescription: string;
|
||||
}
|
@ -454,6 +454,8 @@ This auto-tagging feature enhances retrieval by adding another layer of domain-s
|
||||
model: 'Model',
|
||||
modelTip: 'Large language chat model',
|
||||
modelMessage: 'Please select!',
|
||||
modelEnabledTools: 'Enabled tools',
|
||||
modelEnabledToolsTip: 'Please select one or more tools for the chat model to use. It takes no effect for models not supporting tool call.',
|
||||
freedom: 'Freedom',
|
||||
improvise: 'Improvise',
|
||||
precise: 'Precise',
|
||||
@ -1267,5 +1269,15 @@ This delimiter is used to split the input text into several text pieces echo of
|
||||
inputVariables: 'Input variables',
|
||||
runningHintText: 'is running...🕞',
|
||||
},
|
||||
llmTools: {
|
||||
bad_calculator: {
|
||||
name: "Calculator",
|
||||
description: "A tool to calculate the sum of two numbers (will give wrong answer)",
|
||||
params: {
|
||||
a: "The first number",
|
||||
b: "The second number",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
};
|
||||
|
@ -461,6 +461,8 @@ General:实体和关系提取提示来自 GitHub - microsoft/graphrag:基于
|
||||
model: '模型',
|
||||
modelTip: '大语言聊天模型',
|
||||
modelMessage: '请选择',
|
||||
modelEnabledTools: '可用的工具',
|
||||
modelEnabledToolsTip: '请选择一个或多个可供该模型所使用的工具。仅对支持工具调用的模型生效。',
|
||||
freedom: '自由度',
|
||||
improvise: '即兴创作',
|
||||
precise: '精确',
|
||||
@ -1231,5 +1233,15 @@ General:实体和关系提取提示来自 GitHub - microsoft/graphrag:基于
|
||||
knowledge: 'knowledge',
|
||||
chat: 'chat',
|
||||
},
|
||||
llmTools: {
|
||||
bad_calculator: {
|
||||
name: "计算器",
|
||||
description: "用于计算两个数的和的工具(会给出错误答案)",
|
||||
params: {
|
||||
a: "第一个数",
|
||||
b: "第二个数",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
};
|
||||
|
@ -4,10 +4,18 @@ import { PromptEditor } from '@/components/prompt-editor';
|
||||
import { useTranslate } from '@/hooks/common-hooks';
|
||||
import { Form, Switch } from 'antd';
|
||||
import { IOperatorForm } from '../../interface';
|
||||
import LLMToolsSelect from '@/components/llm-tools-select';
|
||||
import { useState } from 'react';
|
||||
|
||||
const GenerateForm = ({ onValuesChange, form }: IOperatorForm) => {
|
||||
const { t } = useTranslate('flow');
|
||||
|
||||
const [isCurrentLlmSupportTools, setCurrentLlmSupportTools] = useState(false);
|
||||
|
||||
const onLlmSelectChanged = (_: string, option: any) => {
|
||||
setCurrentLlmSupportTools(option.is_tools);
|
||||
};
|
||||
|
||||
return (
|
||||
<Form
|
||||
name="basic"
|
||||
@ -21,7 +29,7 @@ const GenerateForm = ({ onValuesChange, form }: IOperatorForm) => {
|
||||
label={t('model', { keyPrefix: 'chat' })}
|
||||
tooltip={t('modelTip', { keyPrefix: 'chat' })}
|
||||
>
|
||||
<LLMSelect></LLMSelect>
|
||||
<LLMSelect onInitialValue={onLlmSelectChanged} onChange={onLlmSelectChanged}></LLMSelect>
|
||||
</Form.Item>
|
||||
<Form.Item
|
||||
name={['prompt']}
|
||||
@ -38,6 +46,13 @@ const GenerateForm = ({ onValuesChange, form }: IOperatorForm) => {
|
||||
{/* <Input.TextArea rows={8}></Input.TextArea> */}
|
||||
<PromptEditor></PromptEditor>
|
||||
</Form.Item>
|
||||
<Form.Item
|
||||
name={'llm_enabled_tools'}
|
||||
label={t('modelEnabledTools', { keyPrefix: 'chat' })}
|
||||
tooltip={t('modelEnabledToolsTip', { keyPrefix: 'chat' })}
|
||||
>
|
||||
<LLMToolsSelect disabled={!isCurrentLlmSupportTools}></LLMToolsSelect>
|
||||
</Form.Item>
|
||||
<Form.Item
|
||||
name={['cite']}
|
||||
label={t('cite')}
|
||||
|
18
web/src/services/plugin-service.ts
Normal file
18
web/src/services/plugin-service.ts
Normal file
@ -0,0 +1,18 @@
|
||||
import api from '@/utils/api';
|
||||
import registerServer from '@/utils/register-server';
|
||||
import request from '@/utils/request';
|
||||
|
||||
const {
|
||||
llm_tools
|
||||
} = api;
|
||||
|
||||
const methods = {
|
||||
getLlmTools: {
|
||||
url: llm_tools,
|
||||
method: 'get',
|
||||
},
|
||||
} as const;
|
||||
|
||||
const pluginService = registerServer<keyof typeof methods>(methods, request);
|
||||
|
||||
export default pluginService;
|
@ -32,6 +32,9 @@ export default {
|
||||
delete_llm: `${api_host}/llm/delete_llm`,
|
||||
deleteFactory: `${api_host}/llm/delete_factory`,
|
||||
|
||||
// plugin
|
||||
llm_tools: `${api_host}/plugin/llm_tools`,
|
||||
|
||||
// knowledge base
|
||||
kb_list: `${api_host}/kb/list`,
|
||||
create_kb: `${api_host}/kb/create`,
|
||||
|
Loading…
x
Reference in New Issue
Block a user