Feature/feat1017 (#2872)

### What problem does this PR solve?

1. fix: mid map show error in knowledge graph, juse because
```@antv/g6```version changed
2. feat: concurrent threads configuration support in graph extractor
3. fix: used tokens update failed for tenant
4. feat: timeout configuration support for llm
5. fix: regex error in graph extractor
6. feat: qwen rerank(```gte-rerank```) support
7. fix: timeout deal in knowledge graph index process. Now chat by
stream output, also, it is configuratable.
8. feat: ```qwen-long``` model configuration

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: chongchuanbing <chongchuanbing@gmail.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
This commit is contained in:
chongchuanbing 2024-10-21 12:11:08 +08:00 committed by GitHub
parent 4bdf3fd48e
commit ac26d09a59
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 95 additions and 35 deletions

View File

@ -167,11 +167,13 @@ class TenantLLMService(CommonService):
else:
assert False, "LLM type error"
llm_name = mdlnm.split("@")[0] if "@" in mdlnm else mdlnm
num = 0
try:
for u in cls.query(tenant_id=tenant_id, llm_name=mdlnm):
for u in cls.query(tenant_id=tenant_id, llm_name=llm_name):
num += cls.model.update(used_tokens=u.used_tokens + used_tokens)\
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == mdlnm)\
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name)\
.execute()
except Exception as e:
pass
@ -207,7 +209,7 @@ class LLMBundle(object):
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
database_logger.error(
"Can't update token usage for {}/EMBEDDING".format(self.tenant_id))
"Can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
return emd, used_tokens
def encode_queries(self, query: str):
@ -215,7 +217,7 @@ class LLMBundle(object):
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
database_logger.error(
"Can't update token usage for {}/EMBEDDING".format(self.tenant_id))
"Can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
return emd, used_tokens
def similarity(self, query: str, texts: list):
@ -223,7 +225,7 @@ class LLMBundle(object):
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
database_logger.error(
"Can't update token usage for {}/RERANK".format(self.tenant_id))
"Can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
return sim, used_tokens
def describe(self, image, max_tokens=300):
@ -231,7 +233,7 @@ class LLMBundle(object):
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
database_logger.error(
"Can't update token usage for {}/IMAGE2TEXT".format(self.tenant_id))
"Can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
return txt
def transcription(self, audio):
@ -239,7 +241,7 @@ class LLMBundle(object):
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
database_logger.error(
"Can't update token usage for {}/SEQUENCE2TXT".format(self.tenant_id))
"Can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
return txt
def tts(self, text):
@ -254,10 +256,10 @@ class LLMBundle(object):
def chat(self, system, history, gen_conf):
txt, used_tokens = self.mdl.chat(system, history, gen_conf)
if not TenantLLMService.increase_usage(
if isinstance(txt, int) and not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens, self.llm_name):
database_logger.error(
"Can't update token usage for {}/CHAT".format(self.tenant_id))
"Can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
return txt
def chat_streamly(self, system, history, gen_conf):
@ -266,6 +268,6 @@ class LLMBundle(object):
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, txt, self.llm_name):
database_logger.error(
"Can't update token usage for {}/CHAT".format(self.tenant_id))
"Can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt))
return
yield txt

View File

@ -89,9 +89,15 @@
{
"name": "Tongyi-Qianwen",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"tags": "LLM,TEXT EMBEDDING,TEXT RE-RANK,SPEECH2TEXT,MODERATION",
"status": "1",
"llm": [
{
"llm_name": "qwen-long",
"tags": "LLM,CHAT,10000K",
"max_tokens": 1000000,
"model_type": "chat"
},
{
"llm_name": "qwen-turbo",
"tags": "LLM,CHAT,8K",
@ -139,6 +145,12 @@
"tags": "LLM,CHAT,IMAGE2TEXT",
"max_tokens": 765,
"model_type": "image2text"
},
{
"llm_name": "gte-rerank",
"tags": "RE-RANK,4k",
"max_tokens": 4000,
"model_type": "rerank"
}
]
},

View File

@ -164,6 +164,7 @@ class GraphExtractor:
text = perform_variable_replacements(self._extraction_prompt, variables=variables)
gen_conf = {"temperature": 0.3}
response = self._llm.chat(text, [{"role": "user", "content": "Output:"}], gen_conf)
if response.find("**ERROR**") >= 0: raise Exception(response)
token_count = num_tokens_from_string(text + response)
results = response or ""

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from concurrent.futures import ThreadPoolExecutor
import json
from functools import reduce
@ -64,7 +65,8 @@ def build_knowledge_graph_chunks(tenant_id: str, chunks: List[str], callback, en
texts, graphs = [], []
cnt = 0
threads = []
exe = ThreadPoolExecutor(max_workers=50)
max_workers = int(os.environ.get('GRAPH_EXTRACTOR_MAX_WORKERS', 50))
exe = ThreadPoolExecutor(max_workers=max_workers)
for i in range(len(chunks)):
tkn_cnt = num_tokens_from_string(chunks[i])
if cnt+tkn_cnt >= left_token_count and texts:

View File

@ -16,6 +16,7 @@
import collections
import logging
import os
import re
import logging
import traceback
@ -89,7 +90,8 @@ class MindMapExtractor:
prompt_variables = {}
try:
exe = ThreadPoolExecutor(max_workers=12)
max_workers = int(os.environ.get('MINDMAP_EXTRACTOR_MAX_WORKERS', 12))
exe = ThreadPoolExecutor(max_workers=max_workers)
threads = []
token_count = max(self._llm.max_length * 0.8, self._llm.max_length-512)
texts = []

View File

@ -122,7 +122,8 @@ RerankModel = {
"TogetherAI": TogetherAIRerank,
"SILICONFLOW": SILICONFLOWRerank,
"BaiduYiyan": BaiduYiyanRerank,
"Voyage AI": VoyageRerank
"Voyage AI": VoyageRerank,
"Tongyi-Qianwen": QWenRerank,
}
Seq2txtModel = {

View File

@ -31,7 +31,8 @@ import asyncio
class Base(ABC):
def __init__(self, key, model_name, base_url):
self.client = OpenAI(api_key=key, base_url=base_url)
timeout = int(os.environ.get('LM_TIMEOUT_SECONDS', 600))
self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout)
self.model_name = model_name
def chat(self, system, history, gen_conf):
@ -216,28 +217,39 @@ class QWenChat(Base):
self.model_name = model_name
def chat(self, system, history, gen_conf):
from http import HTTPStatus
if system:
history.insert(0, {"role": "system", "content": system})
response = Generation.call(
self.model_name,
messages=history,
result_format='message',
**gen_conf
)
ans = ""
tk_count = 0
if response.status_code == HTTPStatus.OK:
ans += response.output.choices[0]['message']['content']
tk_count += response.usage.total_tokens
if response.output.choices[0].get("finish_reason", "") == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
return ans, tk_count
stream_flag = str(os.environ.get('QWEN_CHAT_BY_STREAM', 'true')).lower() == 'true'
if not stream_flag:
from http import HTTPStatus
if system:
history.insert(0, {"role": "system", "content": system})
return "**ERROR**: " + response.message, tk_count
response = Generation.call(
self.model_name,
messages=history,
result_format='message',
**gen_conf
)
ans = ""
tk_count = 0
if response.status_code == HTTPStatus.OK:
ans += response.output.choices[0]['message']['content']
tk_count += response.usage.total_tokens
if response.output.choices[0].get("finish_reason", "") == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
return ans, tk_count
def chat_streamly(self, system, history, gen_conf):
return "**ERROR**: " + response.message, tk_count
else:
g = self._chat_streamly(system, history, gen_conf, incremental_output=True)
result_list = list(g)
error_msg_list = [item for item in result_list if str(item).find("**ERROR**") >= 0]
if len(error_msg_list) > 0:
return "**ERROR**: " + "".join(error_msg_list) , 0
else:
return "".join(result_list[:-1]), result_list[-1]
def _chat_streamly(self, system, history, gen_conf, incremental_output=False):
from http import HTTPStatus
if system:
history.insert(0, {"role": "system", "content": system})
@ -249,6 +261,7 @@ class QWenChat(Base):
messages=history,
result_format='message',
stream=True,
incremental_output=incremental_output,
**gen_conf
)
for resp in response:
@ -267,6 +280,9 @@ class QWenChat(Base):
yield tk_count
def chat_streamly(self, system, history, gen_conf):
return self._chat_streamly(system, history, gen_conf)
class ZhipuChat(Base):
def __init__(self, key, model_name="glm-3-turbo", **kwargs):

View File

@ -390,3 +390,27 @@ class VoyageRerank(Base):
for r in res.results:
rank[r.index] = r.relevance_score
return rank, res.total_tokens
class QWenRerank(Base):
def __init__(self, key, model_name='gte-rerank', base_url=None, **kwargs):
import dashscope
self.api_key = key
self.model_name = dashscope.TextReRank.Models.gte_rerank if model_name is None else model_name
def similarity(self, query: str, texts: list):
import dashscope
from http import HTTPStatus
resp = dashscope.TextReRank.call(
api_key=self.api_key,
model=self.model_name,
query=query,
documents=texts,
top_n=len(texts),
return_documents=False
)
rank = np.zeros(len(texts), dtype=float)
if resp.status_code == HTTPStatus.OK:
for r in resp.output.results:
rank[r.index] = r.relevance_score
return rank, resp.usage.total_tokens
return rank, 0