API: retrieval api (#1763)

### What problem does this PR solve?

Add retrieval api on a specific knowledge base


![ragflow](https://github.com/user-attachments/assets/dc30a4c3-03c5-4d34-bb7c-60b8830f1225)

https://github.com/infiniflow/ragflow/issues/1102

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
Valdanito 2024-08-01 13:20:53 +08:00 committed by GitHub
parent da11a20c92
commit b9a50ef4b8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -20,7 +20,7 @@ from datetime import datetime, timedelta
from flask import request, Response
from flask_login import login_required, current_user
from api.db import FileType, ParserType, FileSource
from api.db import FileType, ParserType, FileSource, LLMType
from api.db.db_models import APIToken, API4Conversation, Task, File
from api.db.services import duplicate_name
from api.db.services.api_service import APITokenService, API4ConversationService
@ -29,6 +29,7 @@ from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService
from api.db.services.task_service import queue_tasks, TaskService
from api.db.services.user_service import UserTenantService
from api.settings import RetCode, retrievaler
@ -37,6 +38,7 @@ from api.utils.api_utils import server_error_response, get_data_error_result, ge
from itsdangerous import URLSafeTimedSerializer
from api.utils.file_utils import filename_type, thumbnail
from rag.nlp import keyword_extraction
from rag.utils.minio_conn import MINIO
@ -587,3 +589,55 @@ def completion_faq():
except Exception as e:
return server_error_response(e)
@manager.route('/retrieval', methods=['POST'])
@validate_request("kb_id", "question")
def retrieval():
token = request.headers.get('Authorization').split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
req = request.json
kb_id = req.get("kb_id")
doc_ids = req.get("doc_ids", [])
question = req.get("question")
page = int(req.get("page", 1))
size = int(req.get("size", 30))
similarity_threshold = float(req.get("similarity_threshold", 0.2))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
top = int(req.get("top_k", 1024))
try:
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
return get_data_error_result(retmsg="Knowledgebase not found!")
embd_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
rerank_mdl = None
if req.get("rerank_id"):
rerank_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
if req.get("keyword", False):
chat_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)
ranks = retrievaler.retrieval(question, embd_mdl, kb.tenant_id, [kb_id], page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl)
for c in ranks["chunks"]:
if "vector" in c:
del c["vector"]
return get_json_result(data=ranks)
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, retmsg=f'No chunk found! Check the chunk status please!',
retcode=RetCode.DATA_ERROR)
return server_error_response(e)