change licence (#28)

* add front end code

* change licence
This commit is contained in:
KevinHuSh 2024-01-17 09:39:50 +08:00 committed by GitHub
parent 6b8fc2ce1f
commit c372afe40a
9 changed files with 70 additions and 66 deletions

View File

@ -1,5 +1,5 @@
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
# Copyright 2019 The RAG Flow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.

View File

@ -1,5 +1,5 @@
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
# Copyright 2019 The RAG Flow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.

View File

@ -1,5 +1,5 @@
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
# Copyright 2019 The RAG Flow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.

View File

@ -1,5 +1,5 @@
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
# Copyright 2019 The RAG Flow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.

View File

@ -1,8 +1,11 @@
# -*- coding: utf-8 -*-
import json
import re
from elasticsearch_dsl import Q, Search, A
from typing import List, Optional, Tuple, Dict, Union
from dataclasses import dataclass
from rag.settings import es_logger
from rag.utils import rmSpace
from rag.nlp import huqie, query
import numpy as np
@ -34,30 +37,30 @@ class Dealer:
group_docs: List[List] = None
def _vector(self, txt, sim=0.8, topk=10):
qv = self.emb_mdl.encode_queries(txt)
return {
"field": "q_vec",
"field": "q_%d_vec"%len(qv),
"k": topk,
"similarity": sim,
"num_candidates": 1000,
"query_vector": self.emb_mdl.encode_queries(txt)
"query_vector": qv
}
def search(self, req, idxnm, tks_num=3):
keywords = []
qst = req.get("question", "")
bqry, keywords = self.qryr.question(qst)
if req.get("kb_ids"):
bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
bqry.filter.append(Q("exists", field="q_tks"))
if req.get("doc_ids"):
bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
bqry.boost = 0.05
print(bqry)
s = Search()
pg = int(req.get("page", 1)) - 1
ps = int(req.get("size", 1000))
src = req.get("field", ["docnm_kwd", "content_ltks", "kb_id",
"image_id", "doc_id", "q_vec"])
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id","img_id",
"image_id", "doc_id", "q_512_vec", "q_768_vec",
"q_1024_vec", "q_1536_vec"])
s = s.query(bqry)[pg * ps:(pg + 1) * ps]
s = s.highlight("content_ltks")
@ -66,22 +69,24 @@ class Dealer:
s = s.sort(
{"create_time": {"order": "desc", "unmapped_type": "date"}})
s = s.highlight_options(
fragment_size=120,
number_of_fragments=5,
boundary_scanner_locale="zh-CN",
boundary_scanner="SENTENCE",
boundary_chars=",./;:\\!(),。?:!……()——、"
)
if qst:
s = s.highlight_options(
fragment_size=120,
number_of_fragments=5,
boundary_scanner_locale="zh-CN",
boundary_scanner="SENTENCE",
boundary_chars=",./;:\\!(),。?:!……()——、"
)
s = s.to_dict()
q_vec = []
if req.get("vector"):
s["knn"] = self._vector(qst, req.get("similarity", 0.4), ps)
s["knn"]["filter"] = bqry.to_dict()
del s["highlight"]
if "highlight" in s: del s["highlight"]
q_vec = s["knn"]["query_vector"]
es_logger.info("【Q】: {}".format(json.dumps(s)))
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
print("TOTAL: ", self.es.getTotal(res))
es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
if self.es.getTotal(res) == 0 and "knn" in s:
bqry, _ = self.qryr.question(qst, min_match="10%")
if req.get("kb_ids"):
@ -109,8 +114,7 @@ class Dealer:
query_vector=q_vec,
aggregation=aggs,
highlight=self.getHighlight(res),
field=self.getFields(res, ["docnm_kwd", "content_ltks",
"kb_id", "image_id", "doc_id", "q_vec"]),
field=self.getFields(res, src),
keywords=list(kwds)
)
@ -237,14 +241,4 @@ class Dealer:
return sim
if __name__ == "__main__":
from util import es_conn
SE = Dealer(es_conn.HuEs("infiniflow"))
qs = [
"胡凯",
""
]
for q in qs:
print(">>>>>>>>>>>>>>>>>>>>", q)
print(SE.search(
{"question": q, "kb_ids": "64f072a75f3b97c865718c4a"}, "infiniflow_*"))

View File

@ -62,7 +62,7 @@ class Dealer:
return set(res.keys())
return res
fnm = os.path.join(get_project_base_directory(), "res")
fnm = os.path.join(get_project_base_directory(), "rag/res")
self.ne, self.df = {}, {}
try:
self.ne = json.load(open(os.path.join(fnm, "ner.json"), "r"))

View File

@ -1,5 +1,5 @@
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
# Copyright 2019 The RAG Flow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.

View File

@ -1,5 +1,5 @@
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
# Copyright 2019 The RAG Flow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import datetime
import json
import logging
import os
@ -108,17 +109,17 @@ def build(row, cvmdl):
(int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
return []
res = ELASTICSEARCH.search(Q("term", doc_id=row["id"]))
if ELASTICSEARCH.getTotal(res) > 0:
ELASTICSEARCH.updateScriptByQuery(Q("term", doc_id=row["id"]),
scripts="""
if(!ctx._source.kb_id.contains('%s'))
ctx._source.kb_id.add('%s');
""" % (str(row["kb_id"]), str(row["kb_id"])),
idxnm=search.index_name(row["tenant_id"])
)
set_progress(row["id"], 1, "Done")
return []
# res = ELASTICSEARCH.search(Q("term", doc_id=row["id"]))
# if ELASTICSEARCH.getTotal(res) > 0:
# ELASTICSEARCH.updateScriptByQuery(Q("term", doc_id=row["id"]),
# scripts="""
# if(!ctx._source.kb_id.contains('%s'))
# ctx._source.kb_id.add('%s');
# """ % (str(row["kb_id"]), str(row["kb_id"])),
# idxnm=search.index_name(row["tenant_id"])
# )
# set_progress(row["id"], 1, "Done")
# return []
random.seed(time.time())
set_progress(row["id"], random.randint(0, 20) /
@ -155,8 +156,7 @@ def build(row, cvmdl):
"doc_id": row["id"],
"kb_id": [str(row["kb_id"])],
"docnm_kwd": os.path.split(row["location"])[-1],
"title_tks": huqie.qie(row["name"]),
"updated_at": str(row["update_time"]).replace("T", " ")[:19]
"title_tks": huqie.qie(row["name"])
}
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
output_buffer = BytesIO()
@ -179,6 +179,7 @@ def build(row, cvmdl):
MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
docs.append(d)
for arr, img in obj.table_chunks:
@ -193,6 +194,7 @@ def build(row, cvmdl):
img.save(output_buffer, format='JPEG')
MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
docs.append(d)
set_progress(row["id"], random.randint(60, 70) /
100., "Continue embedding the content.")
@ -218,23 +220,11 @@ def embedding(docs, mdl):
vects = 0.1 * tts + 0.9 * cnts
assert len(vects) == len(docs)
for i, d in enumerate(docs):
d["q_vec"] = vects[i].tolist()
v = vects[i].tolist()
d["q_%d_vec"%len(v)] = v
return tk_count
def model_instance(tenant_id, llm_type):
model_config = TenantLLMService.get_api_key(tenant_id, model_type=LLMType.EMBEDDING)
if not model_config:
model_config = {"llm_factory": "local", "api_key": "", "llm_name": ""}
else: model_config = model_config[0].to_dict()
if llm_type == LLMType.EMBEDDING:
if model_config["llm_factory"] not in EmbeddingModel: return
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"])
if llm_type == LLMType.IMAGE2TEXT:
if model_config["llm_factory"] not in CvModel: return
return CvModel[model_config.llm_factory](model_config["api_key"], model_config["llm_name"])
def main(comm, mod):
global model
from rag.llm import HuEmbedding
@ -247,12 +237,12 @@ def main(comm, mod):
tmf = open(tm_fnm, "a+")
for _, r in rows.iterrows():
embd_mdl = model_instance(r["tenant_id"], LLMType.EMBEDDING)
embd_mdl = TenantLLMService.model_instance(r["tenant_id"], LLMType.EMBEDDING)
if not embd_mdl:
set_progress(r["id"], -1, "Can't find embedding model!")
cron_logger.error("Tenant({}) can't find embedding model!".format(r["tenant_id"]))
continue
cv_mdl = model_instance(r["tenant_id"], LLMType.IMAGE2TEXT)
cv_mdl = TenantLLMService.model_instance(r["tenant_id"], LLMType.IMAGE2TEXT)
st_tm = timer()
cks = build(r, cv_mdl)
if not cks:

View File

@ -241,6 +241,26 @@ class HuEs:
es_logger.error("ES search timeout for 3 times!")
raise Exception("ES search timeout.")
def get(self, doc_id, idxnm=None):
for i in range(3):
try:
res = self.es.get(index=(self.idxnm if not idxnm else idxnm),
id=doc_id)
if str(res.get("timed_out", "")).lower() == "true":
raise Exception("Es Timeout.")
return res
except Exception as e:
es_logger.error(
"ES get exception: " +
str(e) +
"【Q】" +
doc_id)
if str(e).find("Timeout") > 0:
continue
raise e
es_logger.error("ES search timeout for 3 times!")
raise Exception("ES search timeout.")
def updateByQuery(self, q, d):
ubq = UpdateByQuery(index=self.idxnm).using(self.es).query(q)
scripts = ""