mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-10 19:18:57 +08:00
Fix instructions for Ollama (#7468)
1. Use `host.docker.internal` as base URL 2. Fix numbers in list 3. Make clear what is the console input and what is the output ### What problem does this PR solve? _Briefly describe what this PR aims to solve. Include background context that will help reviewers understand the purpose of the PR._ ### Type of change - [ ] Bug Fix (non-breaking change which fixes an issue) - [ ] New Feature (non-breaking change which adds functionality) - [ ] Documentation Update - [ ] Refactoring - [ ] Performance Improvement - [ ] Other (please describe):
This commit is contained in:
parent
f29a5de9f5
commit
c4b3d3af95
@ -31,65 +31,65 @@ This user guide does not intend to cover much of the installation or configurati
|
||||
### 1. Deploy Ollama using Docker
|
||||
|
||||
```bash
|
||||
sudo docker run --name ollama -p 11434:11434 ollama/ollama
|
||||
time=2024-12-02T02:20:21.360Z level=INFO source=routes.go:1248 msg="Listening on [::]:11434 (version 0.4.6)"
|
||||
time=2024-12-02T02:20:21.360Z level=INFO source=common.go:49 msg="Dynamic LLM libraries" runners="[cpu cpu_avx cpu_avx2 cuda_v11 cuda_v12]"
|
||||
$ sudo docker run --name ollama -p 11434:11434 ollama/ollama
|
||||
> time=2024-12-02T02:20:21.360Z level=INFO source=routes.go:1248 msg="Listening on [::]:11434 (version 0.4.6)"
|
||||
> time=2024-12-02T02:20:21.360Z level=INFO source=common.go:49 msg="Dynamic LLM libraries" runners="[cpu cpu_avx cpu_avx2 cuda_v11 cuda_v12]"
|
||||
```
|
||||
|
||||
Ensure Ollama is listening on all IP address:
|
||||
```bash
|
||||
sudo ss -tunlp | grep 11434
|
||||
tcp LISTEN 0 4096 0.0.0.0:11434 0.0.0.0:* users:(("docker-proxy",pid=794507,fd=4))
|
||||
tcp LISTEN 0 4096 [::]:11434 [::]:* users:(("docker-proxy",pid=794513,fd=4))
|
||||
$ sudo ss -tunlp | grep 11434
|
||||
> tcp LISTEN 0 4096 0.0.0.0:11434 0.0.0.0:* users:(("docker-proxy",pid=794507,fd=4))
|
||||
> tcp LISTEN 0 4096 [::]:11434 [::]:* users:(("docker-proxy",pid=794513,fd=4))
|
||||
```
|
||||
|
||||
Pull models as you need. We recommend that you start with `llama3.2` (a 3B chat model) and `bge-m3` (a 567M embedding model):
|
||||
```bash
|
||||
sudo docker exec ollama ollama pull llama3.2
|
||||
pulling dde5aa3fc5ff... 100% ▕████████████████▏ 2.0 GB
|
||||
success
|
||||
$ sudo docker exec ollama ollama pull llama3.2
|
||||
> pulling dde5aa3fc5ff... 100% ▕████████████████▏ 2.0 GB
|
||||
> success
|
||||
```
|
||||
|
||||
```bash
|
||||
sudo docker exec ollama ollama pull bge-m3
|
||||
pulling daec91ffb5dd... 100% ▕████████████████▏ 1.2 GB
|
||||
success
|
||||
$ sudo docker exec ollama ollama pull bge-m3
|
||||
> pulling daec91ffb5dd... 100% ▕████████████████▏ 1.2 GB
|
||||
> success
|
||||
```
|
||||
|
||||
### 2. Ensure Ollama is accessible
|
||||
|
||||
- If RAGFlow runs in Docker and Ollama runs on the same host machine, check if Ollama is accessible from inside the RAGFlow container:
|
||||
```bash
|
||||
sudo docker exec -it ragflow-server bash
|
||||
curl http://host.docker.internal:11434/
|
||||
Ollama is running
|
||||
$ sudo docker exec -it ragflow-server bash
|
||||
$ curl http://host.docker.internal:11434/
|
||||
> Ollama is running
|
||||
```
|
||||
|
||||
- If RAGFlow is launched from source code and Ollama runs on the same host machine as RAGFlow, check if Ollama is accessible from RAGFlow's host machine:
|
||||
```bash
|
||||
curl http://localhost:11434/
|
||||
Ollama is running
|
||||
$ curl http://localhost:11434/
|
||||
> Ollama is running
|
||||
```
|
||||
|
||||
- If RAGFlow and Ollama run on different machines, check if Ollama is accessible from RAGFlow's host machine:
|
||||
```bash
|
||||
curl http://${IP_OF_OLLAMA_MACHINE}:11434/
|
||||
Ollama is running
|
||||
$ curl http://${IP_OF_OLLAMA_MACHINE}:11434/
|
||||
> Ollama is running
|
||||
```
|
||||
|
||||
### 4. Add Ollama
|
||||
### 3. Add Ollama
|
||||
|
||||
In RAGFlow, click on your logo on the top right of the page **>** **Model providers** and add Ollama to RAGFlow:
|
||||
|
||||

|
||||
|
||||
|
||||
### 5. Complete basic Ollama settings
|
||||
### 4. Complete basic Ollama settings
|
||||
|
||||
In the popup window, complete basic settings for Ollama:
|
||||
|
||||
1. Ensure that your model name and type match those been pulled at step 1 (Deploy Ollama using Docker). For example, (`llama3.2` and `chat`) or (`bge-m3` and `embedding`).
|
||||
2. Ensure that the base URL match the URL determined at step 2 (Ensure Ollama is accessible).
|
||||
2. In Ollama base URL, as determined by step 2, replace `localhost` with `host.docker.internal`.
|
||||
3. OPTIONAL: Switch on the toggle under **Does it support Vision?** if your model includes an image-to-text model.
|
||||
|
||||
|
||||
@ -100,14 +100,14 @@ Max retries exceeded with url: /api/chat (Caused by NewConnectionError('<urllib3
|
||||
```
|
||||
:::
|
||||
|
||||
### 6. Update System Model Settings
|
||||
### 5. Update System Model Settings
|
||||
|
||||
Click on your logo **>** **Model providers** **>** **System Model Settings** to update your model:
|
||||
|
||||
- *You should now be able to find **llama3.2** from the dropdown list under **Chat model**, and **bge-m3** from the dropdown list under **Embedding model**.*
|
||||
- _If your local model is an embedding model, you should find it under **Embedding model**._
|
||||
|
||||
### 7. Update Chat Configuration
|
||||
### 6. Update Chat Configuration
|
||||
|
||||
Update your model(s) accordingly in **Chat Configuration**.
|
||||
|
||||
@ -348,4 +348,4 @@ Step 2: Run **jina_server.py**, specifying either the model's name or its local
|
||||
```bash
|
||||
python jina_server.py --model_name gpt2
|
||||
```
|
||||
> The script only supports models downloaded from Hugging Face.
|
||||
> The script only supports models downloaded from Hugging Face.
|
||||
|
Loading…
x
Reference in New Issue
Block a user