mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-06-04 11:24:00 +08:00
Add resume parser and fix bugs (#59)
* Update .gitignore * Update .gitignore * Add resume parser and fix bugs
This commit is contained in:
parent
eb8254e688
commit
c5ea37cd30
4
.gitignore
vendored
4
.gitignore
vendored
@ -3,6 +3,10 @@
|
||||
debug/
|
||||
target/
|
||||
__pycache__/
|
||||
hudet/
|
||||
cv/
|
||||
layout_app.py
|
||||
resume/
|
||||
|
||||
# Remove Cargo.lock from gitignore if creating an executable, leave it for libraries
|
||||
# More information here https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
|
||||
|
@ -47,17 +47,20 @@ def list():
|
||||
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
||||
if not tenant_id:
|
||||
return get_data_error_result(retmsg="Tenant not found!")
|
||||
e, doc = DocumentService.get_by_id(doc_id)
|
||||
if not e:
|
||||
return get_data_error_result(retmsg="Document not found!")
|
||||
query = {
|
||||
"doc_ids": [doc_id], "page": page, "size": size, "question": question
|
||||
}
|
||||
if "available_int" in req:
|
||||
query["available_int"] = int(req["available_int"])
|
||||
sres = retrievaler.search(query, search.index_name(tenant_id))
|
||||
res = {"total": sres.total, "chunks": []}
|
||||
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
|
||||
for id in sres.ids:
|
||||
d = {
|
||||
"chunk_id": id,
|
||||
"content_with_weight": rmSpace(sres.highlight[id]) if question else sres.field[id]["content_with_weight"],
|
||||
"content_with_weight": rmSpace(sres.highlight[id]) if question else sres.field[id].get("content_with_weight", ""),
|
||||
"doc_id": sres.field[id]["doc_id"],
|
||||
"docnm_kwd": sres.field[id]["docnm_kwd"],
|
||||
"important_kwd": sres.field[id].get("important_kwd", []),
|
||||
@ -110,7 +113,7 @@ def get():
|
||||
"important_kwd")
|
||||
def set():
|
||||
req = request.json
|
||||
d = {"id": req["chunk_id"]}
|
||||
d = {"id": req["chunk_id"], "content_with_weight": req["content_with_weight"]}
|
||||
d["content_ltks"] = huqie.qie(req["content_with_weight"])
|
||||
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
|
||||
d["important_kwd"] = req["important_kwd"]
|
||||
@ -181,11 +184,12 @@ def create():
|
||||
md5 = hashlib.md5()
|
||||
md5.update((req["content_with_weight"] + req["doc_id"]).encode("utf-8"))
|
||||
chunck_id = md5.hexdigest()
|
||||
d = {"id": chunck_id, "content_ltks": huqie.qie(req["content_with_weight"])}
|
||||
d = {"id": chunck_id, "content_ltks": huqie.qie(req["content_with_weight"]), "content_with_weight": req["content_with_weight"]}
|
||||
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
|
||||
d["important_kwd"] = req.get("important_kwd", [])
|
||||
d["important_tks"] = huqie.qie(" ".join(req.get("important_kwd", [])))
|
||||
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
||||
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
|
||||
|
||||
try:
|
||||
e, doc = DocumentService.get_by_id(req["doc_id"])
|
||||
|
@ -13,16 +13,21 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import re
|
||||
|
||||
from flask import request
|
||||
from flask_login import login_required
|
||||
from api.db.services.dialog_service import DialogService, ConversationService
|
||||
from api.db import LLMType
|
||||
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import LLMService, LLMBundle
|
||||
from api.settings import access_logger
|
||||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||||
from api.utils import get_uuid
|
||||
from api.utils.api_utils import get_json_result
|
||||
from rag.llm import ChatModel
|
||||
from rag.nlp import retrievaler
|
||||
from rag.nlp.search import index_name
|
||||
from rag.utils import num_tokens_from_string, encoder
|
||||
|
||||
|
||||
@ -163,6 +168,17 @@ def chat(dialog, messages, **kwargs):
|
||||
if not llm:
|
||||
raise LookupError("LLM(%s) not found"%dialog.llm_id)
|
||||
llm = llm[0]
|
||||
question = messages[-1]["content"]
|
||||
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING)
|
||||
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
|
||||
|
||||
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
|
||||
## try to use sql if field mapping is good to go
|
||||
if field_map:
|
||||
markdown_tbl,chunks = use_sql(question, field_map, dialog.tenant_id, chat_mdl)
|
||||
if markdown_tbl:
|
||||
return {"answer": markdown_tbl, "retrieval": {"chunks": chunks}}
|
||||
|
||||
prompt_config = dialog.prompt_config
|
||||
for p in prompt_config["parameters"]:
|
||||
if p["key"] == "knowledge":continue
|
||||
@ -170,9 +186,6 @@ def chat(dialog, messages, **kwargs):
|
||||
if p["key"] not in kwargs:
|
||||
prompt_config["system"] = prompt_config["system"].replace("{%s}"%p["key"], " ")
|
||||
|
||||
question = messages[-1]["content"]
|
||||
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING)
|
||||
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
|
||||
kbinfos = retrievaler.retrieval(question, embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n, dialog.similarity_threshold,
|
||||
dialog.vector_similarity_weight, top=1024, aggs=False)
|
||||
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
|
||||
@ -196,4 +209,46 @@ def chat(dialog, messages, **kwargs):
|
||||
vtweight=dialog.vector_similarity_weight)
|
||||
for c in kbinfos["chunks"]:
|
||||
if c.get("vector"):del c["vector"]
|
||||
return {"answer": answer, "retrieval": kbinfos}
|
||||
return {"answer": answer, "retrieval": kbinfos}
|
||||
|
||||
|
||||
def use_sql(question,field_map, tenant_id, chat_mdl):
|
||||
sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据我的问题写出sql。"
|
||||
user_promt = """
|
||||
表名:{};
|
||||
数据库表字段说明如下:
|
||||
{}
|
||||
|
||||
问题:{}
|
||||
请写出SQL。
|
||||
""".format(
|
||||
index_name(tenant_id),
|
||||
"\n".join([f"{k}: {v}" for k,v in field_map.items()]),
|
||||
question
|
||||
)
|
||||
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {"temperature": 0.1})
|
||||
sql = re.sub(r".*?select ", "select ", sql, flags=re.IGNORECASE)
|
||||
sql = re.sub(r" +", " ", sql)
|
||||
if sql[:len("select ")].lower() != "select ":
|
||||
return None, None
|
||||
if sql[:len("select *")].lower() != "select *":
|
||||
sql = "select doc_id,docnm_kwd," + sql[6:]
|
||||
|
||||
tbl = retrievaler.sql_retrieval(sql)
|
||||
if not tbl: return None, None
|
||||
|
||||
docid_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "doc_id"])
|
||||
docnm_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "docnm_kwd"])
|
||||
clmn_idx = [ii for ii in range(len(tbl["columns"])) if ii not in (docid_idx|docnm_idx)]
|
||||
|
||||
clmns = "|".join([re.sub(r"/.*", "", field_map.get(tbl["columns"][i]["name"], f"C{i}")) for i in clmn_idx]) + "|原文"
|
||||
line = "|".join(["------" for _ in range(len(clmn_idx))]) + "|------"
|
||||
rows = ["|".join([str(r[i]) for i in clmn_idx])+"|" for r in tbl["rows"]]
|
||||
if not docid_idx or not docnm_idx:
|
||||
access_logger.error("SQL missing field: " + sql)
|
||||
return "\n".join([clmns, line, "\n".join(rows)]), []
|
||||
|
||||
rows = "\n".join([r+f"##{ii}$$" for ii,r in enumerate(rows)])
|
||||
docid_idx = list(docid_idx)[0]
|
||||
docnm_idx = list(docnm_idx)[0]
|
||||
return "\n".join([clmns, line, rows]), [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]]
|
||||
|
@ -21,9 +21,6 @@ import flask
|
||||
from elasticsearch_dsl import Q
|
||||
from flask import request
|
||||
from flask_login import login_required, current_user
|
||||
|
||||
from api.db.db_models import Task
|
||||
from api.db.services.task_service import TaskService
|
||||
from rag.nlp import search
|
||||
from rag.utils import ELASTICSEARCH
|
||||
from api.db.services import duplicate_name
|
||||
@ -35,7 +32,7 @@ from api.db.services.document_service import DocumentService
|
||||
from api.settings import RetCode
|
||||
from api.utils.api_utils import get_json_result
|
||||
from rag.utils.minio_conn import MINIO
|
||||
from api.utils.file_utils import filename_type
|
||||
from api.utils.file_utils import filename_type, thumbnail
|
||||
|
||||
|
||||
@manager.route('/upload', methods=['POST'])
|
||||
@ -78,7 +75,8 @@ def upload():
|
||||
"type": filename_type(filename),
|
||||
"name": filename,
|
||||
"location": location,
|
||||
"size": len(blob)
|
||||
"size": len(blob),
|
||||
"thumbnail": thumbnail(filename, blob)
|
||||
})
|
||||
return get_json_result(data=doc.to_json())
|
||||
except Exception as e:
|
||||
|
@ -474,7 +474,7 @@ class Knowledgebase(DataBaseModel):
|
||||
vector_similarity_weight = FloatField(default=0.3)
|
||||
|
||||
parser_id = CharField(max_length=32, null=False, help_text="default parser ID", default=ParserType.GENERAL.value)
|
||||
parser_config = JSONField(null=False, default={"from_page":0, "to_page": 100000})
|
||||
parser_config = JSONField(null=False, default={"pages":[[0,1000000]]})
|
||||
status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted,1: validate)", default="1")
|
||||
|
||||
def __str__(self):
|
||||
@ -489,7 +489,7 @@ class Document(DataBaseModel):
|
||||
thumbnail = TextField(null=True, help_text="thumbnail base64 string")
|
||||
kb_id = CharField(max_length=256, null=False, index=True)
|
||||
parser_id = CharField(max_length=32, null=False, help_text="default parser ID")
|
||||
parser_config = JSONField(null=False, default={"from_page":0, "to_page": 100000})
|
||||
parser_config = JSONField(null=False, default={"pages":[[0,1000000]]})
|
||||
source_type = CharField(max_length=128, null=False, default="local", help_text="where dose this document from")
|
||||
type = CharField(max_length=32, null=False, help_text="file extension")
|
||||
created_by = CharField(max_length=32, null=False, help_text="who created it")
|
||||
|
@ -21,5 +21,6 @@ class DialogService(CommonService):
|
||||
model = Dialog
|
||||
|
||||
|
||||
|
||||
class ConversationService(CommonService):
|
||||
model = Conversation
|
||||
|
@ -63,3 +63,31 @@ class KnowledgebaseService(CommonService):
|
||||
d = kbs[0].to_dict()
|
||||
d["embd_id"] = kbs[0].tenant.embd_id
|
||||
return d
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def update_parser_config(cls, id, config):
|
||||
e, m = cls.get_by_id(id)
|
||||
if not e:raise LookupError(f"knowledgebase({id}) not found.")
|
||||
def dfs_update(old, new):
|
||||
for k,v in new.items():
|
||||
if k not in old:
|
||||
old[k] = v
|
||||
continue
|
||||
if isinstance(v, dict):
|
||||
assert isinstance(old[k], dict)
|
||||
dfs_update(old[k], v)
|
||||
else: old[k] = v
|
||||
dfs_update(m.parser_config, config)
|
||||
cls.update_by_id(id, m.parser_config)
|
||||
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_field_map(cls, ids):
|
||||
conf = {}
|
||||
for k in cls.get_by_ids(ids):
|
||||
if k.parser_config and "field_map" in k.parser_config:
|
||||
conf.update(k.parser_config)
|
||||
return conf
|
||||
|
||||
|
@ -13,11 +13,14 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import base64
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
from io import BytesIO
|
||||
|
||||
import fitz
|
||||
from PIL import Image
|
||||
from cachetools import LRUCache, cached
|
||||
from ruamel.yaml import YAML
|
||||
|
||||
@ -150,4 +153,33 @@ def filename_type(filename):
|
||||
return FileType.AURAL.value
|
||||
|
||||
if re.match(r".*\.(jpg|jpeg|png|tif|gif|pcx|tga|exif|fpx|svg|psd|cdr|pcd|dxf|ufo|eps|ai|raw|WMF|webp|avif|apng|icon|ico|mpg|mpeg|avi|rm|rmvb|mov|wmv|asf|dat|asx|wvx|mpe|mpa|mp4)$", filename):
|
||||
return FileType.VISUAL
|
||||
return FileType.VISUAL
|
||||
|
||||
|
||||
def thumbnail(filename, blob):
|
||||
filename = filename.lower()
|
||||
if re.match(r".*\.pdf$", filename):
|
||||
pdf = fitz.open(stream=blob, filetype="pdf")
|
||||
pix = pdf[0].get_pixmap(matrix=fitz.Matrix(0.03, 0.03))
|
||||
buffered = BytesIO()
|
||||
Image.frombytes("RGB", [pix.width, pix.height],
|
||||
pix.samples).save(buffered, format="png")
|
||||
return "data:image/png;base64," + base64.b64encode(buffered.getvalue())
|
||||
|
||||
if re.match(r".*\.(jpg|jpeg|png|tif|gif|icon|ico|webp)$", filename):
|
||||
return ("data:image/%s;base64,"%filename.split(".")[-1]) + base64.b64encode(Image.open(BytesIO(blob)).thumbnail((30, 30)).tobytes())
|
||||
|
||||
if re.match(r".*\.(ppt|pptx)$", filename):
|
||||
import aspose.slides as slides
|
||||
import aspose.pydrawing as drawing
|
||||
try:
|
||||
with slides.Presentation(BytesIO(blob)) as presentation:
|
||||
buffered = BytesIO()
|
||||
presentation.slides[0].get_thumbnail(0.03, 0.03).save(buffered, drawing.imaging.ImageFormat.png)
|
||||
return "data:image/png;base64," + base64.b64encode(buffered.getvalue())
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -3,7 +3,6 @@ import re
|
||||
from collections import Counter
|
||||
|
||||
from api.db import ParserType
|
||||
from rag.cv.ppdetection import PPDet
|
||||
from rag.parser import tokenize
|
||||
from rag.nlp import huqie
|
||||
from rag.parser.pdf_parser import HuParser
|
||||
|
102
rag/app/resume.py
Normal file
102
rag/app/resume.py
Normal file
@ -0,0 +1,102 @@
|
||||
import copy
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import requests
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from rag.nlp import huqie
|
||||
|
||||
from rag.settings import cron_logger
|
||||
from rag.utils import rmSpace
|
||||
|
||||
|
||||
def chunk(filename, binary=None, callback=None, **kwargs):
|
||||
if not re.search(r"\.(pdf|doc|docx|txt)$", filename, flags=re.IGNORECASE): raise NotImplementedError("file type not supported yet(pdf supported)")
|
||||
|
||||
url = os.environ.get("INFINIFLOW_SERVER")
|
||||
if not url:raise EnvironmentError("Please set environment variable: 'INFINIFLOW_SERVER'")
|
||||
token = os.environ.get("INFINIFLOW_TOKEN")
|
||||
if not token:raise EnvironmentError("Please set environment variable: 'INFINIFLOW_TOKEN'")
|
||||
|
||||
if not binary:
|
||||
with open(filename, "rb") as f: binary = f.read()
|
||||
def remote_call():
|
||||
nonlocal filename, binary
|
||||
for _ in range(3):
|
||||
try:
|
||||
res = requests.post(url + "/v1/layout/resume/", files=[(filename, binary)],
|
||||
headers={"Authorization": token}, timeout=180)
|
||||
res = res.json()
|
||||
if res["retcode"] != 0: raise RuntimeError(res["retmsg"])
|
||||
return res["data"]
|
||||
except RuntimeError as e:
|
||||
raise e
|
||||
except Exception as e:
|
||||
cron_logger.error("resume parsing:" + str(e))
|
||||
|
||||
resume = remote_call()
|
||||
print(json.dumps(resume, ensure_ascii=False, indent=2))
|
||||
|
||||
field_map = {
|
||||
"name_kwd": "姓名/名字",
|
||||
"gender_kwd": "性别(男,女)",
|
||||
"age_int": "年龄/岁/年纪",
|
||||
"phone_kwd": "电话/手机/微信",
|
||||
"email_tks": "email/e-mail/邮箱",
|
||||
"position_name_tks": "职位/职能/岗位/职责",
|
||||
"expect_position_name_tks": "期望职位/期望职能/期望岗位",
|
||||
|
||||
"hightest_degree_kwd": "最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
|
||||
"first_degree_kwd": "第一学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
|
||||
"first_major_tks": "第一学历专业",
|
||||
"first_school_name_tks": "第一学历毕业学校",
|
||||
"edu_first_fea_kwd": "第一学历标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)",
|
||||
|
||||
"degree_kwd": "过往学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
|
||||
"major_tks": "学过的专业/过往专业",
|
||||
"school_name_tks": "学校/毕业院校",
|
||||
"sch_rank_kwd": "学校标签(顶尖学校,精英学校,优质学校,一般学校)",
|
||||
"edu_fea_kwd": "教育标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)",
|
||||
|
||||
"work_exp_flt": "工作年限/工作年份/N年经验/毕业了多少年",
|
||||
"birth_dt": "生日/出生年份",
|
||||
"corp_nm_tks": "就职过的公司/之前的公司/上过班的公司",
|
||||
"corporation_name_tks": "最近就职(上班)的公司/上一家公司",
|
||||
"edu_end_int": "毕业年份",
|
||||
"expect_city_names_tks": "期望城市",
|
||||
"industry_name_tks": "所在行业"
|
||||
}
|
||||
titles = []
|
||||
for n in ["name_kwd", "gender_kwd", "position_name_tks", "age_int"]:
|
||||
v = resume.get(n, "")
|
||||
if isinstance(v, list):v = v[0]
|
||||
if n.find("tks") > 0: v = rmSpace(v)
|
||||
titles.append(str(v))
|
||||
doc = {
|
||||
"docnm_kwd": filename,
|
||||
"title_tks": huqie.qie("-".join(titles)+"-简历")
|
||||
}
|
||||
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
||||
pairs = []
|
||||
for n,m in field_map.items():
|
||||
if not resume.get(n):continue
|
||||
v = resume[n]
|
||||
if isinstance(v, list):v = " ".join(v)
|
||||
if n.find("tks") > 0: v = rmSpace(v)
|
||||
pairs.append((m, str(v)))
|
||||
|
||||
doc["content_with_weight"] = "\n".join(["{}: {}".format(re.sub(r"([^()]+)", "", k), v) for k,v in pairs])
|
||||
doc["content_ltks"] = huqie.qie(doc["content_with_weight"])
|
||||
doc["content_sm_ltks"] = huqie.qieqie(doc["content_ltks"])
|
||||
for n, _ in field_map.items(): doc[n] = resume[n]
|
||||
|
||||
print(doc)
|
||||
KnowledgebaseService.update_parser_config(kwargs["kb_id"], {"field_map": field_map})
|
||||
return [doc]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
def dummy(a, b):
|
||||
pass
|
||||
chunk(sys.argv[1], callback=dummy)
|
@ -1,13 +1,13 @@
|
||||
import copy
|
||||
import random
|
||||
import re
|
||||
from io import BytesIO
|
||||
from xpinyin import Pinyin
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from nltk import word_tokenize
|
||||
from openpyxl import load_workbook
|
||||
from dateutil.parser import parse as datetime_parse
|
||||
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from rag.parser import is_english, tokenize
|
||||
from rag.nlp import huqie, stemmer
|
||||
|
||||
@ -27,18 +27,19 @@ class Excel(object):
|
||||
ws = wb[sheetname]
|
||||
rows = list(ws.rows)
|
||||
headers = [cell.value for cell in rows[0]]
|
||||
missed = set([i for i,h in enumerate(headers) if h is None])
|
||||
headers = [cell.value for i,cell in enumerate(rows[0]) if i not in missed]
|
||||
missed = set([i for i, h in enumerate(headers) if h is None])
|
||||
headers = [cell.value for i, cell in enumerate(rows[0]) if i not in missed]
|
||||
data = []
|
||||
for i, r in enumerate(rows[1:]):
|
||||
row = [cell.value for ii,cell in enumerate(r) if ii not in missed]
|
||||
row = [cell.value for ii, cell in enumerate(r) if ii not in missed]
|
||||
if len(row) != len(headers):
|
||||
fails.append(str(i))
|
||||
continue
|
||||
data.append(row)
|
||||
done += 1
|
||||
if done % 999 == 0:
|
||||
callback(done * 0.6/total, ("Extract records: {}".format(len(res)) + (f"{len(fails)} failure({sheetname}), line: %s..."%(",".join(fails[:3])) if fails else "")))
|
||||
callback(done * 0.6 / total, ("Extract records: {}".format(len(res)) + (
|
||||
f"{len(fails)} failure({sheetname}), line: %s..." % (",".join(fails[:3])) if fails else "")))
|
||||
res.append(pd.DataFrame(np.array(data), columns=headers))
|
||||
|
||||
callback(0.6, ("Extract records: {}. ".format(done) + (
|
||||
@ -61,9 +62,10 @@ def trans_bool(s):
|
||||
def column_data_type(arr):
|
||||
uni = len(set([a for a in arr if a is not None]))
|
||||
counts = {"int": 0, "float": 0, "text": 0, "datetime": 0, "bool": 0}
|
||||
trans = {t:f for f,t in [(int, "int"), (float, "float"), (trans_datatime, "datetime"), (trans_bool, "bool"), (str, "text")]}
|
||||
trans = {t: f for f, t in
|
||||
[(int, "int"), (float, "float"), (trans_datatime, "datetime"), (trans_bool, "bool"), (str, "text")]}
|
||||
for a in arr:
|
||||
if a is None:continue
|
||||
if a is None: continue
|
||||
if re.match(r"[+-]?[0-9]+(\.0+)?$", str(a).replace("%%", "")):
|
||||
counts["int"] += 1
|
||||
elif re.match(r"[+-]?[0-9.]+$", str(a).replace("%%", "")):
|
||||
@ -72,17 +74,18 @@ def column_data_type(arr):
|
||||
counts["bool"] += 1
|
||||
elif trans_datatime(str(a)):
|
||||
counts["datetime"] += 1
|
||||
else: counts["text"] += 1
|
||||
counts = sorted(counts.items(), key=lambda x: x[1]*-1)
|
||||
else:
|
||||
counts["text"] += 1
|
||||
counts = sorted(counts.items(), key=lambda x: x[1] * -1)
|
||||
ty = counts[0][0]
|
||||
for i in range(len(arr)):
|
||||
if arr[i] is None:continue
|
||||
if arr[i] is None: continue
|
||||
try:
|
||||
arr[i] = trans[ty](str(arr[i]))
|
||||
except Exception as e:
|
||||
arr[i] = None
|
||||
if ty == "text":
|
||||
if len(arr) > 128 and uni/len(arr) < 0.1:
|
||||
if len(arr) > 128 and uni / len(arr) < 0.1:
|
||||
ty = "keyword"
|
||||
return arr, ty
|
||||
|
||||
@ -123,48 +126,51 @@ def chunk(filename, binary=None, callback=None, **kwargs):
|
||||
|
||||
dfs = [pd.DataFrame(np.array(rows), columns=headers)]
|
||||
|
||||
else: raise NotImplementedError("file type not supported yet(excel, text, csv supported)")
|
||||
else:
|
||||
raise NotImplementedError("file type not supported yet(excel, text, csv supported)")
|
||||
|
||||
res = []
|
||||
PY = Pinyin()
|
||||
fieds_map = {"text": "_tks", "int": "_int", "keyword": "_kwd", "float": "_flt", "datetime": "_dt", "bool": "_kwd"}
|
||||
for df in dfs:
|
||||
for n in ["id", "_id", "index", "idx"]:
|
||||
if n in df.columns:del df[n]
|
||||
if n in df.columns: del df[n]
|
||||
clmns = df.columns.values
|
||||
txts = list(copy.deepcopy(clmns))
|
||||
py_clmns = [PY.get_pinyins(n)[0].replace("-", "_") for n in clmns]
|
||||
clmn_tys = []
|
||||
for j in range(len(clmns)):
|
||||
cln,ty = column_data_type(df[clmns[j]])
|
||||
cln, ty = column_data_type(df[clmns[j]])
|
||||
clmn_tys.append(ty)
|
||||
df[clmns[j]] = cln
|
||||
if ty == "text": txts.extend([str(c) for c in cln if c])
|
||||
clmns_map = [(py_clmns[j] + fieds_map[clmn_tys[j]], clmns[j]) for i in range(len(clmns))]
|
||||
# TODO: set this column map to KB parser configuration
|
||||
|
||||
eng = is_english(txts)
|
||||
for ii,row in df.iterrows():
|
||||
for ii, row in df.iterrows():
|
||||
d = {}
|
||||
row_txt = []
|
||||
for j in range(len(clmns)):
|
||||
if row[clmns[j]] is None:continue
|
||||
if row[clmns[j]] is None: continue
|
||||
fld = clmns_map[j][0]
|
||||
d[fld] = row[clmns[j]] if clmn_tys[j] != "text" else huqie.qie(row[clmns[j]])
|
||||
row_txt.append("{}:{}".format(clmns[j], row[clmns[j]]))
|
||||
if not row_txt:continue
|
||||
if not row_txt: continue
|
||||
tokenize(d, "; ".join(row_txt), eng)
|
||||
print(d)
|
||||
res.append(d)
|
||||
|
||||
KnowledgebaseService.update_parser_config(kwargs["kb_id"], {"field_map": {k: v for k, v in clmns_map}})
|
||||
callback(0.6, "")
|
||||
|
||||
return res
|
||||
|
||||
|
||||
|
||||
if __name__== "__main__":
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
|
||||
|
||||
def dummy(a, b):
|
||||
pass
|
||||
chunk(sys.argv[1], callback=dummy)
|
||||
|
||||
|
||||
chunk(sys.argv[1], callback=dummy)
|
||||
|
@ -74,7 +74,9 @@ class Dealer:
|
||||
s = s.highlight("title_ltks")
|
||||
if not qst:
|
||||
s = s.sort(
|
||||
{"create_time": {"order": "desc", "unmapped_type": "date"}})
|
||||
{"create_time": {"order": "desc", "unmapped_type": "date"}},
|
||||
{"create_timestamp_flt": {"order": "desc", "unmapped_type": "float"}}
|
||||
)
|
||||
|
||||
if qst:
|
||||
s = s.highlight_options(
|
||||
@ -298,3 +300,22 @@ class Dealer:
|
||||
ranks["doc_aggs"][dnm] += 1
|
||||
|
||||
return ranks
|
||||
|
||||
def sql_retrieval(self, sql, fetch_size=128):
|
||||
sql = re.sub(r"[ ]+", " ", sql)
|
||||
replaces = []
|
||||
for r in re.finditer(r" ([a-z_]+_l?tks like |[a-z_]+_l?tks ?= ?)'([^']+)'", sql):
|
||||
fld, v = r.group(1), r.group(2)
|
||||
fld = re.sub(r" ?(like|=)$", "", fld).lower()
|
||||
if v[0] == "%%": v = v[1:-1]
|
||||
match = " MATCH({}, '{}', 'operator=OR;fuzziness=AUTO:1,3;minimum_should_match=30%') ".format(fld, huqie.qie(v))
|
||||
replaces.append((r.group(1)+r.group(2), match))
|
||||
|
||||
for p, r in replaces: sql.replace(p, r)
|
||||
|
||||
try:
|
||||
tbl = self.es.sql(sql, fetch_size)
|
||||
return tbl
|
||||
except Exception as e:
|
||||
es_logger(f"SQL failure: {sql} =>" + str(e))
|
||||
|
||||
|
127
rag/nlp/surname.py
Normal file
127
rag/nlp/surname.py
Normal file
@ -0,0 +1,127 @@
|
||||
#-*- coding: utf-8 -*-
|
||||
m = set(["赵","钱","孙","李",
|
||||
"周","吴","郑","王",
|
||||
"冯","陈","褚","卫",
|
||||
"蒋","沈","韩","杨",
|
||||
"朱","秦","尤","许",
|
||||
"何","吕","施","张",
|
||||
"孔","曹","严","华",
|
||||
"金","魏","陶","姜",
|
||||
"戚","谢","邹","喻",
|
||||
"柏","水","窦","章",
|
||||
"云","苏","潘","葛",
|
||||
"奚","范","彭","郎",
|
||||
"鲁","韦","昌","马",
|
||||
"苗","凤","花","方",
|
||||
"俞","任","袁","柳",
|
||||
"酆","鲍","史","唐",
|
||||
"费","廉","岑","薛",
|
||||
"雷","贺","倪","汤",
|
||||
"滕","殷","罗","毕",
|
||||
"郝","邬","安","常",
|
||||
"乐","于","时","傅",
|
||||
"皮","卞","齐","康",
|
||||
"伍","余","元","卜",
|
||||
"顾","孟","平","黄",
|
||||
"和","穆","萧","尹",
|
||||
"姚","邵","湛","汪",
|
||||
"祁","毛","禹","狄",
|
||||
"米","贝","明","臧",
|
||||
"计","伏","成","戴",
|
||||
"谈","宋","茅","庞",
|
||||
"熊","纪","舒","屈",
|
||||
"项","祝","董","梁",
|
||||
"杜","阮","蓝","闵",
|
||||
"席","季","麻","强",
|
||||
"贾","路","娄","危",
|
||||
"江","童","颜","郭",
|
||||
"梅","盛","林","刁",
|
||||
"钟","徐","邱","骆",
|
||||
"高","夏","蔡","田",
|
||||
"樊","胡","凌","霍",
|
||||
"虞","万","支","柯",
|
||||
"昝","管","卢","莫",
|
||||
"经","房","裘","缪",
|
||||
"干","解","应","宗",
|
||||
"丁","宣","贲","邓",
|
||||
"郁","单","杭","洪",
|
||||
"包","诸","左","石",
|
||||
"崔","吉","钮","龚",
|
||||
"程","嵇","邢","滑",
|
||||
"裴","陆","荣","翁",
|
||||
"荀","羊","於","惠",
|
||||
"甄","曲","家","封",
|
||||
"芮","羿","储","靳",
|
||||
"汲","邴","糜","松",
|
||||
"井","段","富","巫",
|
||||
"乌","焦","巴","弓",
|
||||
"牧","隗","山","谷",
|
||||
"车","侯","宓","蓬",
|
||||
"全","郗","班","仰",
|
||||
"秋","仲","伊","宫",
|
||||
"宁","仇","栾","暴",
|
||||
"甘","钭","厉","戎",
|
||||
"祖","武","符","刘",
|
||||
"景","詹","束","龙",
|
||||
"叶","幸","司","韶",
|
||||
"郜","黎","蓟","薄",
|
||||
"印","宿","白","怀",
|
||||
"蒲","邰","从","鄂",
|
||||
"索","咸","籍","赖",
|
||||
"卓","蔺","屠","蒙",
|
||||
"池","乔","阴","鬱",
|
||||
"胥","能","苍","双",
|
||||
"闻","莘","党","翟",
|
||||
"谭","贡","劳","逄",
|
||||
"姬","申","扶","堵",
|
||||
"冉","宰","郦","雍",
|
||||
"郤","璩","桑","桂",
|
||||
"濮","牛","寿","通",
|
||||
"边","扈","燕","冀",
|
||||
"郏","浦","尚","农",
|
||||
"温","别","庄","晏",
|
||||
"柴","瞿","阎","充",
|
||||
"慕","连","茹","习",
|
||||
"宦","艾","鱼","容",
|
||||
"向","古","易","慎",
|
||||
"戈","廖","庾","终",
|
||||
"暨","居","衡","步",
|
||||
"都","耿","满","弘",
|
||||
"匡","国","文","寇",
|
||||
"广","禄","阙","东",
|
||||
"欧","殳","沃","利",
|
||||
"蔚","越","夔","隆",
|
||||
"师","巩","厍","聂",
|
||||
"晁","勾","敖","融",
|
||||
"冷","訾","辛","阚",
|
||||
"那","简","饶","空",
|
||||
"曾","母","沙","乜",
|
||||
"养","鞠","须","丰",
|
||||
"巢","关","蒯","相",
|
||||
"查","后","荆","红",
|
||||
"游","竺","权","逯",
|
||||
"盖","益","桓","公",
|
||||
"兰","原","乞","西","阿","肖","丑","位","曽","巨","德","代","圆","尉","仵","纳","仝","脱","丘","但","展","迪","付","覃","晗","特","隋","苑","奥","漆","谌","郄","练","扎","邝","渠","信","门","陳","化","原","密","泮","鹿","赫",
|
||||
"万俟","司马","上官","欧阳",
|
||||
"夏侯","诸葛","闻人","东方",
|
||||
"赫连","皇甫","尉迟","公羊",
|
||||
"澹台","公冶","宗政","濮阳",
|
||||
"淳于","单于","太叔","申屠",
|
||||
"公孙","仲孙","轩辕","令狐",
|
||||
"钟离","宇文","长孙","慕容",
|
||||
"鲜于","闾丘","司徒","司空",
|
||||
"亓官","司寇","仉督","子车",
|
||||
"颛孙","端木","巫马","公西",
|
||||
"漆雕","乐正","壤驷","公良",
|
||||
"拓跋","夹谷","宰父","榖梁",
|
||||
"晋","楚","闫","法","汝","鄢","涂","钦",
|
||||
"段干","百里","东郭","南门",
|
||||
"呼延","归","海","羊舌","微","生",
|
||||
"岳","帅","缑","亢","况","后","有","琴",
|
||||
"梁丘","左丘","东门","西门",
|
||||
"商","牟","佘","佴","伯","赏","南宫",
|
||||
"墨","哈","谯","笪","年","爱","阳","佟",
|
||||
"第五","言","福"])
|
||||
|
||||
def isit(n):return n.strip() in m
|
||||
|
@ -81,11 +81,13 @@ def dispatch():
|
||||
tsks = []
|
||||
if r["type"] == FileType.PDF.value:
|
||||
pages = HuParser.total_page_number(r["name"], MINIO.get(r["kb_id"], r["location"]))
|
||||
for p in range(0, pages, 10):
|
||||
task = new_task()
|
||||
task["from_page"] = p
|
||||
task["to_page"] = min(p + 10, pages)
|
||||
tsks.append(task)
|
||||
for s,e in r["parser_config"].get("pages", [(0,100000)]):
|
||||
e = min(e, pages)
|
||||
for p in range(s, e, 10):
|
||||
task = new_task()
|
||||
task["from_page"] = p
|
||||
task["to_page"] = min(p + 10, e)
|
||||
tsks.append(task)
|
||||
else:
|
||||
tsks.append(new_task())
|
||||
print(tsks)
|
||||
|
@ -58,7 +58,7 @@ FACTORY = {
|
||||
}
|
||||
|
||||
|
||||
def set_progress(task_id, from_page, to_page, prog=None, msg="Processing..."):
|
||||
def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."):
|
||||
cancel = TaskService.do_cancel(task_id)
|
||||
if cancel:
|
||||
msg += " [Canceled]"
|
||||
@ -110,7 +110,7 @@ def collect(comm, mod, tm):
|
||||
|
||||
def build(row, cvmdl):
|
||||
if row["size"] > DOC_MAXIMUM_SIZE:
|
||||
set_progress(row["id"], -1, "File size exceeds( <= %dMb )" %
|
||||
set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
|
||||
(int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
|
||||
return []
|
||||
|
||||
@ -119,7 +119,7 @@ def build(row, cvmdl):
|
||||
try:
|
||||
cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"]))
|
||||
cks = chunker.chunk(row["name"], MINIO.get(row["kb_id"], row["location"]), row["from_page"], row["to_page"],
|
||||
callback)
|
||||
callback, kb_id=row["kb_id"])
|
||||
except Exception as e:
|
||||
if re.search("(No such file|not found)", str(e)):
|
||||
callback(-1, "Can not find file <%s>" % row["doc_name"])
|
||||
@ -144,6 +144,7 @@ def build(row, cvmdl):
|
||||
md5.update((ck["content_with_weight"] + str(d["doc_id"])).encode("utf-8"))
|
||||
d["_id"] = md5.hexdigest()
|
||||
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
||||
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
|
||||
if not d.get("image"):
|
||||
docs.append(d)
|
||||
continue
|
||||
@ -197,15 +198,15 @@ def main(comm, mod):
|
||||
|
||||
tmf = open(tm_fnm, "a+")
|
||||
for _, r in rows.iterrows():
|
||||
callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
|
||||
try:
|
||||
embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING)
|
||||
cv_mdl = LLMBundle(r["tenant_id"], LLMType.IMAGE2TEXT)
|
||||
# TODO: sequence2text model
|
||||
except Exception as e:
|
||||
set_progress(r["id"], -1, str(e))
|
||||
callback(prog=-1, msg=str(e))
|
||||
continue
|
||||
|
||||
callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
|
||||
st_tm = timer()
|
||||
cks = build(r, cv_mdl)
|
||||
if not cks:
|
||||
|
@ -3,13 +3,14 @@ import json
|
||||
import time
|
||||
import copy
|
||||
import elasticsearch
|
||||
from elastic_transport import ConnectionTimeout
|
||||
from elasticsearch import Elasticsearch
|
||||
from elasticsearch_dsl import UpdateByQuery, Search, Index
|
||||
from rag.settings import es_logger
|
||||
from rag import settings
|
||||
from rag.utils import singleton
|
||||
|
||||
es_logger.info("Elasticsearch version: "+ str(elasticsearch.__version__))
|
||||
es_logger.info("Elasticsearch version: "+str(elasticsearch.__version__))
|
||||
|
||||
|
||||
@singleton
|
||||
@ -57,7 +58,7 @@ class HuEs:
|
||||
body=d,
|
||||
id=id,
|
||||
doc_type="doc",
|
||||
refresh=False,
|
||||
refresh=True,
|
||||
retry_on_conflict=100)
|
||||
else:
|
||||
r = self.es.update(
|
||||
@ -65,7 +66,7 @@ class HuEs:
|
||||
self.idxnm if not idxnm else idxnm),
|
||||
body=d,
|
||||
id=id,
|
||||
refresh=False,
|
||||
refresh=True,
|
||||
retry_on_conflict=100)
|
||||
es_logger.info("Successfully upsert: %s" % id)
|
||||
T = True
|
||||
@ -240,6 +241,18 @@ class HuEs:
|
||||
es_logger.error("ES search timeout for 3 times!")
|
||||
raise Exception("ES search timeout.")
|
||||
|
||||
def sql(self, sql, fetch_size=128, format="json", timeout=2):
|
||||
for i in range(3):
|
||||
try:
|
||||
res = self.es.sql.query(body={"query": sql, "fetch_size": fetch_size}, format=format, request_timeout=timeout)
|
||||
return res
|
||||
except ConnectionTimeout as e:
|
||||
es_logger.error("Timeout【Q】:" + sql)
|
||||
continue
|
||||
es_logger.error("ES search timeout for 3 times!")
|
||||
raise ConnectionTimeout()
|
||||
|
||||
|
||||
def get(self, doc_id, idxnm=None):
|
||||
for i in range(3):
|
||||
try:
|
||||
@ -308,7 +321,8 @@ class HuEs:
|
||||
try:
|
||||
r = self.es.delete_by_query(
|
||||
index=idxnm if idxnm else self.idxnm,
|
||||
body=Search().query(query).to_dict())
|
||||
refresh = True,
|
||||
body=Search().query(query).to_dict())
|
||||
return True
|
||||
except Exception as e:
|
||||
es_logger.error("ES updateByQuery deleteByQuery: " +
|
||||
|
Loading…
x
Reference in New Issue
Block a user