refa: Optimize create dataset validation (#7451)

### What problem does this PR solve?

Optimize dataset validation and add function docs

### Type of change

- [x] Refactoring
This commit is contained in:
liu an 2025-05-06 17:38:06 +08:00 committed by GitHub
parent 2f768b96e8
commit c98933499a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 333 additions and 93 deletions

View File

@ -19,7 +19,6 @@ import logging
from flask import request
from peewee import OperationalError
from pydantic import ValidationError
from api import settings
from api.db import FileSource, StatusEnum
@ -41,8 +40,9 @@ from api.utils.api_utils import (
token_required,
valid,
valid_parser_config,
verify_embedding_availability,
)
from api.utils.validation_utils import CreateDatasetReq, format_validation_error_message
from api.utils.validation_utils import CreateDatasetReq, validate_and_parse_json_request
@manager.route("/datasets", methods=["POST"]) # noqa: F821
@ -107,21 +107,14 @@ def create(tenant_id):
data:
type: object
"""
req_i = request.json
if not isinstance(req_i, dict):
return get_error_argument_result(f"Invalid request payload: expected object, got {type(req_i).__name__}")
try:
req_v = CreateDatasetReq(**req_i)
except ValidationError as e:
return get_error_argument_result(format_validation_error_message(e))
# Field name transformations during model dump:
# | Original | Dump Output |
# |----------------|-------------|
# | embedding_model| embd_id |
# | chunk_method | parser_id |
req = req_v.model_dump(by_alias=True)
req, err = validate_and_parse_json_request(request, CreateDatasetReq)
if err is not None:
return get_error_argument_result(err)
try:
if KnowledgebaseService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
@ -146,21 +139,9 @@ def create(tenant_id):
if not req.get("embd_id"):
req["embd_id"] = t.embd_id
else:
builtin_embedding_models = [
"BAAI/bge-large-zh-v1.5@BAAI",
"maidalun1020/bce-embedding-base_v1@Youdao",
]
is_builtin_model = req["embd_id"] in builtin_embedding_models
try:
# model name must be model_name@model_factory
llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(req["embd_id"])
is_tenant_model = TenantLLMService.query(tenant_id=tenant_id, llm_name=llm_name, llm_factory=llm_factory, model_type="embedding")
is_supported_model = LLMService.query(llm_name=llm_name, fid=llm_factory, model_type="embedding")
if not (is_supported_model and (is_builtin_model or is_tenant_model)):
return get_error_argument_result(f"The embedding_model '{req['embd_id']}' is not supported")
except OperationalError as e:
logging.exception(e)
return get_error_data_result(message="Database operation failed")
ok, err = verify_embedding_availability(req["embd_id"], tenant_id)
if not ok:
return err
try:
if not KnowledgebaseService.save(**req):

View File

@ -13,22 +13,22 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import os
from datetime import date
from enum import IntEnum, Enum
import json
from enum import Enum, IntEnum
import rag.utils
import rag.utils.es_conn
import rag.utils.infinity_conn
import rag.utils.opensearch_coon
import rag.utils
from rag.nlp import search
from graphrag import search as kg_search
from api.utils import get_base_config, decrypt_database_config
from api.constants import RAG_FLOW_SERVICE_NAME
from api.utils import decrypt_database_config, get_base_config
from api.utils.file_utils import get_project_base_directory
from graphrag import search as kg_search
from rag.nlp import search
LIGHTEN = int(os.environ.get('LIGHTEN', "0"))
LIGHTEN = int(os.environ.get("LIGHTEN", "0"))
LLM = None
LLM_FACTORY = None
@ -45,7 +45,7 @@ HOST_PORT = None
SECRET_KEY = None
FACTORY_LLM_INFOS = None
DATABASE_TYPE = os.getenv("DB_TYPE", 'mysql')
DATABASE_TYPE = os.getenv("DB_TYPE", "mysql")
DATABASE = decrypt_database_config(name=DATABASE_TYPE)
# authentication
@ -66,11 +66,13 @@ kg_retrievaler = None
# user registration switch
REGISTER_ENABLED = 1
BUILTIN_EMBEDDING_MODELS = ["BAAI/bge-large-zh-v1.5@BAAI", "maidalun1020/bce-embedding-base_v1@Youdao"]
def init_settings():
global LLM, LLM_FACTORY, LLM_BASE_URL, LIGHTEN, DATABASE_TYPE, DATABASE, FACTORY_LLM_INFOS, REGISTER_ENABLED
LIGHTEN = int(os.environ.get('LIGHTEN', "0"))
DATABASE_TYPE = os.getenv("DB_TYPE", 'mysql')
LIGHTEN = int(os.environ.get("LIGHTEN", "0"))
DATABASE_TYPE = os.getenv("DB_TYPE", "mysql")
DATABASE = decrypt_database_config(name=DATABASE_TYPE)
LLM = get_base_config("user_default_llm", {})
LLM_DEFAULT_MODELS = LLM.get("default_models", {})
@ -89,7 +91,7 @@ def init_settings():
global CHAT_MDL, EMBEDDING_MDL, RERANK_MDL, ASR_MDL, IMAGE2TEXT_MDL
if not LIGHTEN:
EMBEDDING_MDL = "BAAI/bge-large-zh-v1.5@BAAI"
EMBEDDING_MDL = BUILTIN_EMBEDDING_MODELS[0]
if LLM_DEFAULT_MODELS:
CHAT_MDL = LLM_DEFAULT_MODELS.get("chat_model", CHAT_MDL)
@ -103,30 +105,25 @@ def init_settings():
EMBEDDING_MDL = EMBEDDING_MDL + (f"@{LLM_FACTORY}" if "@" not in EMBEDDING_MDL and EMBEDDING_MDL != "" else "")
RERANK_MDL = RERANK_MDL + (f"@{LLM_FACTORY}" if "@" not in RERANK_MDL and RERANK_MDL != "" else "")
ASR_MDL = ASR_MDL + (f"@{LLM_FACTORY}" if "@" not in ASR_MDL and ASR_MDL != "" else "")
IMAGE2TEXT_MDL = IMAGE2TEXT_MDL + (
f"@{LLM_FACTORY}" if "@" not in IMAGE2TEXT_MDL and IMAGE2TEXT_MDL != "" else "")
IMAGE2TEXT_MDL = IMAGE2TEXT_MDL + (f"@{LLM_FACTORY}" if "@" not in IMAGE2TEXT_MDL and IMAGE2TEXT_MDL != "" else "")
global API_KEY, PARSERS, HOST_IP, HOST_PORT, SECRET_KEY
API_KEY = LLM.get("api_key", "")
API_KEY = LLM.get("api_key")
PARSERS = LLM.get(
"parsers",
"naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,email:Email,tag:Tag")
"parsers", "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,email:Email,tag:Tag"
)
HOST_IP = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("host", "127.0.0.1")
HOST_PORT = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("http_port")
SECRET_KEY = get_base_config(
RAG_FLOW_SERVICE_NAME,
{}).get("secret_key", str(date.today()))
SECRET_KEY = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("secret_key", str(date.today()))
global AUTHENTICATION_CONF, CLIENT_AUTHENTICATION, HTTP_APP_KEY, GITHUB_OAUTH, FEISHU_OAUTH, OAUTH_CONFIG
# authentication
AUTHENTICATION_CONF = get_base_config("authentication", {})
# client
CLIENT_AUTHENTICATION = AUTHENTICATION_CONF.get(
"client", {}).get(
"switch", False)
CLIENT_AUTHENTICATION = AUTHENTICATION_CONF.get("client", {}).get("switch", False)
HTTP_APP_KEY = AUTHENTICATION_CONF.get("client", {}).get("http_app_key")
GITHUB_OAUTH = get_base_config("oauth", {}).get("github")
FEISHU_OAUTH = get_base_config("oauth", {}).get("feishu")
@ -134,7 +131,7 @@ def init_settings():
OAUTH_CONFIG = get_base_config("oauth", {})
global DOC_ENGINE, docStoreConn, retrievaler, kg_retrievaler
DOC_ENGINE = os.environ.get('DOC_ENGINE', "elasticsearch")
DOC_ENGINE = os.environ.get("DOC_ENGINE", "elasticsearch")
# DOC_ENGINE = os.environ.get('DOC_ENGINE', "opensearch")
lower_case_doc_engine = DOC_ENGINE.lower()
if lower_case_doc_engine == "elasticsearch":

View File

@ -36,11 +36,13 @@ from flask import (
request as flask_request,
)
from itsdangerous import URLSafeTimedSerializer
from peewee import OperationalError
from werkzeug.http import HTTP_STATUS_CODES
from api import settings
from api.constants import REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC
from api.db.db_models import APIToken
from api.db.services.llm_service import LLMService, TenantLLMService
from api.utils import CustomJSONEncoder, get_uuid, json_dumps
requests.models.complexjson.dumps = functools.partial(json.dumps, cls=CustomJSONEncoder)
@ -464,3 +466,55 @@ def check_duplicate_ids(ids, id_type="item"):
# Return unique IDs and error messages
return list(set(ids)), duplicate_messages
def verify_embedding_availability(embd_id: str, tenant_id: str) -> tuple[bool, Response | None]:
"""Verifies availability of an embedding model for a specific tenant.
Implements a four-stage validation process:
1. Model identifier parsing and validation
2. System support verification
3. Tenant authorization check
4. Database operation error handling
Args:
embd_id (str): Unique identifier for the embedding model in format "model_name@factory"
tenant_id (str): Tenant identifier for access control
Returns:
tuple[bool, Response | None]:
- First element (bool):
- True: Model is available and authorized
- False: Validation failed
- Second element contains:
- None on success
- Error detail dict on failure
Raises:
ValueError: When model identifier format is invalid
OperationalError: When database connection fails (auto-handled)
Examples:
>>> verify_embedding_availability("text-embedding@openai", "tenant_123")
(True, None)
>>> verify_embedding_availability("invalid_model", "tenant_123")
(False, {'code': 101, 'message': "Unsupported model: <invalid_model>"})
"""
try:
llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(embd_id)
if not LLMService.query(llm_name=llm_name, fid=llm_factory, model_type="embedding"):
return False, get_error_argument_result(f"Unsupported model: <{embd_id}>")
# Tongyi-Qianwen is added to TenantLLM by default, but remains unusable with empty api_key
tenant_llms = TenantLLMService.get_my_llms(tenant_id=tenant_id)
is_tenant_model = any(llm["llm_name"] == llm_name and llm["llm_factory"] == llm_factory and llm["model_type"] == "embedding" for llm in tenant_llms)
is_builtin_model = embd_id in settings.BUILTIN_EMBEDDING_MODELS
if not (is_builtin_model or is_tenant_model):
return False, get_error_argument_result(f"Unauthorized model: <{embd_id}>")
except OperationalError as e:
logging.exception(e)
return False, get_error_data_result(message="Database operation failed")
return True, None

View File

@ -14,13 +14,102 @@
# limitations under the License.
#
from enum import auto
from typing import Annotated, List, Optional
from typing import Annotated, Any
from flask import Request
from pydantic import BaseModel, Field, StringConstraints, ValidationError, field_validator
from strenum import StrEnum
from werkzeug.exceptions import BadRequest, UnsupportedMediaType
from api.constants import DATASET_NAME_LIMIT
def validate_and_parse_json_request(request: Request, validator: type[BaseModel]) -> tuple[dict[str, Any] | None, str | None]:
"""Validates and parses JSON requests through a multi-stage validation pipeline.
Implements a robust four-stage validation process:
1. Content-Type verification (must be application/json)
2. JSON syntax validation
3. Payload structure type checking
4. Pydantic model validation with error formatting
Args:
request (Request): Flask request object containing HTTP payload
Returns:
tuple[Dict[str, Any] | None, str | None]:
- First element:
- Validated dictionary on success
- None on validation failure
- Second element:
- None on success
- Diagnostic error message on failure
Raises:
UnsupportedMediaType: When Content-Type application/json
BadRequest: For structural JSON syntax errors
ValidationError: When payload violates Pydantic schema rules
Examples:
Successful validation:
```python
# Input: {"name": "Dataset1", "format": "csv"}
# Returns: ({"name": "Dataset1", "format": "csv"}, None)
```
Invalid Content-Type:
```python
# Returns: (None, "Unsupported content type: Expected application/json, got text/xml")
```
Malformed JSON:
```python
# Returns: (None, "Malformed JSON syntax: Missing commas/brackets or invalid encoding")
```
"""
try:
payload = request.get_json() or {}
except UnsupportedMediaType:
return None, f"Unsupported content type: Expected application/json, got {request.content_type}"
except BadRequest:
return None, "Malformed JSON syntax: Missing commas/brackets or invalid encoding"
if not isinstance(payload, dict):
return None, f"Invalid request payload: expected object, got {type(payload).__name__}"
try:
validated_request = validator(**payload)
except ValidationError as e:
return None, format_validation_error_message(e)
parsed_payload = validated_request.model_dump(by_alias=True)
return parsed_payload, None
def format_validation_error_message(e: ValidationError) -> str:
"""Formats validation errors into a standardized string format.
Processes pydantic ValidationError objects to create human-readable error messages
containing field locations, error descriptions, and input values.
Args:
e (ValidationError): The validation error instance containing error details
Returns:
str: Formatted error messages joined by newlines. Each line contains:
- Field path (dot-separated)
- Error message
- Truncated input value (max 128 chars)
Example:
>>> try:
... UserModel(name=123, email="invalid")
... except ValidationError as e:
... print(format_validation_error_message(e))
Field: <name> - Message: <Input should be a valid string> - Value: <123>
Field: <email> - Message: <value is not a valid email address> - Value: <invalid>
"""
error_messages = []
for error in e.errors():
@ -86,7 +175,7 @@ class RaptorConfig(Base):
class GraphragConfig(Base):
use_graphrag: bool = Field(default=False)
entity_types: List[str] = Field(default_factory=lambda: ["organization", "person", "geo", "event", "category"])
entity_types: list[str] = Field(default_factory=lambda: ["organization", "person", "geo", "event", "category"])
method: GraphragMethodEnum = Field(default=GraphragMethodEnum.light)
community: bool = Field(default=False)
resolution: bool = Field(default=False)
@ -97,30 +186,59 @@ class ParserConfig(Base):
auto_questions: int = Field(default=0, ge=0, le=10)
chunk_token_num: int = Field(default=128, ge=1, le=2048)
delimiter: str = Field(default=r"\n", min_length=1)
graphrag: Optional[GraphragConfig] = None
graphrag: GraphragConfig | None = None
html4excel: bool = False
layout_recognize: str = "DeepDOC"
raptor: Optional[RaptorConfig] = None
tag_kb_ids: List[str] = Field(default_factory=list)
raptor: RaptorConfig | None = None
tag_kb_ids: list[str] = Field(default_factory=list)
topn_tags: int = Field(default=1, ge=1, le=10)
filename_embd_weight: Optional[float] = Field(default=None, ge=0.0, le=1.0)
task_page_size: Optional[int] = Field(default=None, ge=1)
pages: Optional[List[List[int]]] = None
filename_embd_weight: float | None = Field(default=None, ge=0.0, le=1.0)
task_page_size: int | None = Field(default=None, ge=1)
pages: list[list[int]] | None = None
class CreateDatasetReq(Base):
name: Annotated[str, StringConstraints(strip_whitespace=True, min_length=1, max_length=128), Field(...)]
avatar: Optional[str] = Field(default=None, max_length=65535)
description: Optional[str] = Field(default=None, max_length=65535)
embedding_model: Annotated[Optional[str], StringConstraints(strip_whitespace=True, max_length=255), Field(default=None, serialization_alias="embd_id")]
name: Annotated[str, StringConstraints(strip_whitespace=True, min_length=1, max_length=DATASET_NAME_LIMIT), Field(...)]
avatar: str | None = Field(default=None, max_length=65535)
description: str | None = Field(default=None, max_length=65535)
embedding_model: Annotated[str | None, StringConstraints(strip_whitespace=True, max_length=255), Field(default=None, serialization_alias="embd_id")]
permission: Annotated[PermissionEnum, StringConstraints(strip_whitespace=True, min_length=1, max_length=16), Field(default=PermissionEnum.me)]
chunk_method: Annotated[ChunkMethodnEnum, StringConstraints(strip_whitespace=True, min_length=1, max_length=32), Field(default=ChunkMethodnEnum.naive, serialization_alias="parser_id")]
pagerank: int = Field(default=0, ge=0, le=100)
parser_config: Optional[ParserConfig] = Field(default=None)
parser_config: ParserConfig | None = Field(default=None)
@field_validator("avatar")
@classmethod
def validate_avatar_base64(cls, v: str) -> str:
"""Validates Base64-encoded avatar string format and MIME type compliance.
Implements a three-stage validation workflow:
1. MIME prefix existence check
2. MIME type format validation
3. Supported type verification
Args:
v (str): Raw avatar field value
Returns:
str: Validated Base64 string
Raises:
ValueError: For structural errors in these cases:
- Missing MIME prefix header
- Invalid MIME prefix format
- Unsupported image MIME type
Example:
```python
# Valid case
CreateDatasetReq(avatar="...")
# Invalid cases
CreateDatasetReq(avatar="image/jpeg;base64,...") # Missing 'data:' prefix
CreateDatasetReq(avatar="data:video/mp4;base64,...") # Unsupported MIME type
```
"""
if v is None:
return v
@ -141,22 +259,83 @@ class CreateDatasetReq(Base):
@field_validator("embedding_model", mode="after")
@classmethod
def validate_embedding_model(cls, v: str) -> str:
"""Validates embedding model identifier format compliance.
Validation pipeline:
1. Structural format verification
2. Component non-empty check
3. Value normalization
Args:
v (str): Raw model identifier
Returns:
str: Validated <model_name>@<provider> format
Raises:
ValueError: For these violations:
- Missing @ separator
- Empty model_name/provider
- Invalid component structure
Examples:
Valid: "text-embedding-3-large@openai"
Invalid: "invalid_model" (no @)
Invalid: "@openai" (empty model_name)
Invalid: "text-embedding-3-large@" (empty provider)
"""
if "@" not in v:
raise ValueError("Embedding model must be xxx@yyy")
raise ValueError("Embedding model identifier must follow <model_name>@<provider> format")
components = v.split("@", 1)
if len(components) != 2 or not all(components):
raise ValueError("Both model_name and provider must be non-empty strings")
model_name, provider = components
if not model_name.strip() or not provider.strip():
raise ValueError("Model name and provider cannot be whitespace-only strings")
return v
@field_validator("permission", mode="before")
@classmethod
def permission_auto_lowercase(cls, v: str) -> str:
if isinstance(v, str):
return v.lower()
return v
"""Normalize permission input to lowercase for consistent PermissionEnum matching.
Args:
v (str): Raw input value for the permission field
Returns:
Lowercase string if input is string type, otherwise returns original value
Behavior:
- Converts string inputs to lowercase (e.g., "ME" "me")
- Non-string values pass through unchanged
- Works in validation pre-processing stage (before enum conversion)
"""
return v.lower() if isinstance(v, str) else v
@field_validator("parser_config", mode="after")
@classmethod
def validate_parser_config_json_length(cls, v: Optional[ParserConfig]) -> Optional[ParserConfig]:
if v is not None:
json_str = v.model_dump_json()
if len(json_str) > 65535:
raise ValueError("Parser config have at most 65535 characters")
def validate_parser_config_json_length(cls, v: ParserConfig | None) -> ParserConfig | None:
"""Validates serialized JSON length constraints for parser configuration.
Implements a three-stage validation workflow:
1. Null check - bypass validation for empty configurations
2. Model serialization - convert Pydantic model to JSON string
3. Size verification - enforce maximum allowed payload size
Args:
v (ParserConfig | None): Raw parser configuration object
Returns:
ParserConfig | None: Validated configuration object
Raises:
ValueError: When serialized JSON exceeds 65,535 characters
"""
if v is None:
return v
if (json_str := v.model_dump_json()) and len(json_str) > 65535:
raise ValueError(f"Parser config exceeds size limit (max 65,535 characters). Current size: {len(json_str):,}")
return v

View File

@ -39,23 +39,23 @@ SESSION_WITH_CHAT_NAME_LIMIT = 255
# DATASET MANAGEMENT
def create_dataset(auth, payload=None):
res = requests.post(url=f"{HOST_ADDRESS}{DATASETS_API_URL}", headers=HEADERS, auth=auth, json=payload)
def create_dataset(auth, payload=None, headers=HEADERS, data=None):
res = requests.post(url=f"{HOST_ADDRESS}{DATASETS_API_URL}", headers=headers, auth=auth, json=payload, data=data)
return res.json()
def list_datasets(auth, params=None):
res = requests.get(url=f"{HOST_ADDRESS}{DATASETS_API_URL}", headers=HEADERS, auth=auth, params=params)
def list_datasets(auth, params=None, headers=HEADERS):
res = requests.get(url=f"{HOST_ADDRESS}{DATASETS_API_URL}", headers=headers, auth=auth, params=params)
return res.json()
def update_dataset(auth, dataset_id, payload=None):
res = requests.put(url=f"{HOST_ADDRESS}{DATASETS_API_URL}/{dataset_id}", headers=HEADERS, auth=auth, json=payload)
def update_dataset(auth, dataset_id, payload=None, headers=HEADERS):
res = requests.put(url=f"{HOST_ADDRESS}{DATASETS_API_URL}/{dataset_id}", headers=headers, auth=auth, json=payload)
return res.json()
def delete_datasets(auth, payload=None):
res = requests.delete(url=f"{HOST_ADDRESS}{DATASETS_API_URL}", headers=HEADERS, auth=auth, json=payload)
def delete_datasets(auth, payload=None, headers=HEADERS):
res = requests.delete(url=f"{HOST_ADDRESS}{DATASETS_API_URL}", headers=headers, auth=auth, json=payload)
return res.json()

View File

@ -98,6 +98,25 @@ class TestDatasetCreation:
assert res["code"] == 101, res
assert res["message"] == f"Dataset name '{name.lower()}' already exists", res
def test_bad_content_type(self, get_http_api_auth):
BAD_CONTENT_TYPE = "text/xml"
res = create_dataset(get_http_api_auth, {"name": "name"}, {"Content-Type": BAD_CONTENT_TYPE})
assert res["code"] == 101, res
assert res["message"] == f"Unsupported content type: Expected application/json, got {BAD_CONTENT_TYPE}", res
@pytest.mark.parametrize(
"payload, expected_message",
[
("a", "Malformed JSON syntax: Missing commas/brackets or invalid encoding"),
('"a"', "Invalid request payload: expected objec"),
],
ids=["malformed_json_syntax", "invalid_request_payload_type"],
)
def test_bad_payload(self, get_http_api_auth, payload, expected_message):
res = create_dataset(get_http_api_auth, data=payload)
assert res["code"] == 101, res
assert expected_message in res["message"], res
def test_avatar(self, get_http_api_auth, tmp_path):
fn = create_image_file(tmp_path / "ragflow_test.png")
payload = {
@ -158,7 +177,7 @@ class TestDatasetCreation:
("embedding-3@ZHIPU-AI", "embedding-3@ZHIPU-AI"),
("embedding_model_default", None),
],
ids=["builtin_baai", "builtin_youdao", "tenant__zhipu", "default"],
ids=["builtin_baai", "builtin_youdao", "tenant_zhipu", "default"],
)
def test_valid_embedding_model(self, get_http_api_auth, name, embedding_model):
if embedding_model is None:
@ -178,29 +197,39 @@ class TestDatasetCreation:
[
("unknown_llm_name", "unknown@ZHIPU-AI"),
("unknown_llm_factory", "embedding-3@unknown"),
("tenant_no_auth", "deepseek-chat@DeepSeek"),
("tenant_no_auth_default_tenant_llm", "text-embedding-v3@Tongyi-Qianwen"),
("tenant_no_auth", "text-embedding-3-small@OpenAI"),
],
ids=["unknown_llm_name", "unknown_llm_factory", "tenant_no_auth"],
ids=["unknown_llm_name", "unknown_llm_factory", "tenant_no_auth_default_tenant_llm", "tenant_no_auth"],
)
def test_invalid_embedding_model(self, get_http_api_auth, name, embedding_model):
payload = {"name": name, "embedding_model": embedding_model}
res = create_dataset(get_http_api_auth, payload)
assert res["code"] == 101, res
assert res["message"] == f"The embedding_model '{embedding_model}' is not supported", res
if "tenant_no_auth" in name:
assert res["message"] == f"Unauthorized model: <{embedding_model}>", res
else:
assert res["message"] == f"Unsupported model: <{embedding_model}>", res
@pytest.mark.parametrize(
"name, embedding_model",
[
("builtin_missing_at", "BAAI/bge-large-zh-v1.5"),
("tenant_missing_at", "embedding-3ZHIPU-AI"),
("missing_at", "BAAI/bge-large-zh-v1.5BAAI"),
("missing_model_name", "@BAAI"),
("missing_provider", "BAAI/bge-large-zh-v1.5@"),
("whitespace_only_model_name", " @BAAI"),
("whitespace_only_provider", "BAAI/bge-large-zh-v1.5@ "),
],
ids=["builtin_missing_at", "tenant_missing_at"],
ids=["missing_at", "empty_model_name", "empty_provider", "whitespace_only_model_name", "whitespace_only_provider"],
)
def test_embedding_model_missing_at(self, get_http_api_auth, name, embedding_model):
def test_embedding_model_format(self, get_http_api_auth, name, embedding_model):
payload = {"name": name, "embedding_model": embedding_model}
res = create_dataset(get_http_api_auth, payload)
assert res["code"] == 101, res
assert "Embedding model must be xxx@yyy" in res["message"], res
if name == "missing_at":
assert "Embedding model identifier must follow <model_name>@<provider> format" in res["message"], res
else:
assert "Both model_name and provider must be non-empty strings" in res["message"], res
@pytest.mark.parametrize(
"name, permission",
@ -485,7 +514,7 @@ class TestDatasetCreation:
("raptor_random_seed_min_limit", {"raptor": {"random_seed": -1}}, "Input should be greater than or equal to 0"),
("raptor_random_seed_float_not_allowed", {"raptor": {"random_seed": 3.14}}, "Input should be a valid integer, got a number with a fractional part"),
("raptor_random_seed_type_invalid", {"raptor": {"random_seed": "string"}}, "Input should be a valid integer, unable to parse string as an integer"),
("parser_config_type_invalid", {"delimiter": "a" * 65536}, "Parser config have at most 65535 characters"),
("parser_config_type_invalid", {"delimiter": "a" * 65536}, "Parser config exceeds size limit (max 65,535 characters)"),
],
ids=[
"auto_keywords_min_limit",