Cache the result from llm for graphrag and raptor (#4051)

### What problem does this PR solve?

#4045

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
Kevin Hu 2024-12-17 09:48:03 +08:00 committed by GitHub
parent 8ea631a2a0
commit cb6e9ce164
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 161 additions and 38 deletions

View File

@ -271,7 +271,7 @@ def queue_tasks(doc: dict, bucket: str, name: str):
def reuse_prev_task_chunks(task: dict, prev_tasks: list[dict], chunking_config: dict):
idx = bisect.bisect_left(prev_tasks, task["from_page"], key=lambda x: x["from_page"])
idx = bisect.bisect_left(prev_tasks, task.get("from_page", 0), key=lambda x: x.get("from_page",0))
if idx >= len(prev_tasks):
return 0
prev_task = prev_tasks[idx]
@ -279,7 +279,11 @@ def reuse_prev_task_chunks(task: dict, prev_tasks: list[dict], chunking_config:
return 0
task["chunk_ids"] = prev_task["chunk_ids"]
task["progress"] = 1.0
task["progress_msg"] = f"Page({task['from_page']}~{task['to_page']}): reused previous task's chunks"
if "from_page" in task and "to_page" in task:
task["progress_msg"] = f"Page({task['from_page']}~{task['to_page']}): "
else:
task["progress_msg"] = ""
task["progress_msg"] += "reused previous task's chunks."
prev_task["chunk_ids"] = ""
return len(task["chunk_ids"].split())

0
graphrag/__init__.py Normal file
View File

View File

@ -16,6 +16,7 @@ from typing import Any
import tiktoken
from graphrag.claim_prompt import CLAIM_EXTRACTION_PROMPT, CONTINUE_PROMPT, LOOP_PROMPT
from graphrag.extractor import Extractor
from rag.llm.chat_model import Base as CompletionLLM
from graphrag.utils import ErrorHandlerFn, perform_variable_replacements
@ -33,10 +34,9 @@ class ClaimExtractorResult:
source_docs: dict[str, Any]
class ClaimExtractor:
class ClaimExtractor(Extractor):
"""Claim extractor class definition."""
_llm: CompletionLLM
_extraction_prompt: str
_summary_prompt: str
_output_formatter_prompt: str
@ -169,7 +169,7 @@ class ClaimExtractor:
}
text = perform_variable_replacements(self._extraction_prompt, variables=variables)
gen_conf = {"temperature": 0.5}
results = self._llm.chat(text, [{"role": "user", "content": "Output:"}], gen_conf)
results = self._chat(text, [{"role": "user", "content": "Output:"}], gen_conf)
claims = results.strip().removesuffix(completion_delimiter)
history = [{"role": "system", "content": text}, {"role": "assistant", "content": results}]
@ -177,7 +177,7 @@ class ClaimExtractor:
for i in range(self._max_gleanings):
text = perform_variable_replacements(CONTINUE_PROMPT, history=history, variables=variables)
history.append({"role": "user", "content": text})
extension = self._llm.chat("", history, gen_conf)
extension = self._chat("", history, gen_conf)
claims += record_delimiter + extension.strip().removesuffix(
completion_delimiter
)
@ -188,7 +188,7 @@ class ClaimExtractor:
history.append({"role": "assistant", "content": extension})
history.append({"role": "user", "content": LOOP_PROMPT})
continuation = self._llm.chat("", history, self._loop_args)
continuation = self._chat("", history, self._loop_args)
if continuation != "YES":
break

View File

@ -15,6 +15,7 @@ import networkx as nx
import pandas as pd
from graphrag import leiden
from graphrag.community_report_prompt import COMMUNITY_REPORT_PROMPT
from graphrag.extractor import Extractor
from graphrag.leiden import add_community_info2graph
from rag.llm.chat_model import Base as CompletionLLM
from graphrag.utils import ErrorHandlerFn, perform_variable_replacements, dict_has_keys_with_types
@ -30,10 +31,9 @@ class CommunityReportsResult:
structured_output: list[dict]
class CommunityReportsExtractor:
class CommunityReportsExtractor(Extractor):
"""Community reports extractor class definition."""
_llm: CompletionLLM
_extraction_prompt: str
_output_formatter_prompt: str
_on_error: ErrorHandlerFn
@ -74,7 +74,7 @@ class CommunityReportsExtractor:
text = perform_variable_replacements(self._extraction_prompt, variables=prompt_variables)
gen_conf = {"temperature": 0.3}
try:
response = self._llm.chat(text, [{"role": "user", "content": "Output:"}], gen_conf)
response = self._chat(text, [{"role": "user", "content": "Output:"}], gen_conf)
token_count += num_tokens_from_string(text + response)
response = re.sub(r"^[^\{]*", "", response)
response = re.sub(r"[^\}]*$", "", response)

View File

@ -8,6 +8,7 @@ Reference:
import json
from dataclasses import dataclass
from graphrag.extractor import Extractor
from graphrag.utils import ErrorHandlerFn, perform_variable_replacements
from rag.llm.chat_model import Base as CompletionLLM
@ -42,10 +43,9 @@ class SummarizationResult:
description: str
class SummarizeExtractor:
class SummarizeExtractor(Extractor):
"""Unipartite graph extractor class definition."""
_llm: CompletionLLM
_entity_name_key: str
_input_descriptions_key: str
_summarization_prompt: str
@ -143,4 +143,4 @@ class SummarizeExtractor:
self._input_descriptions_key: json.dumps(sorted(descriptions)),
}
text = perform_variable_replacements(self._summarization_prompt, variables=variables)
return self._llm.chat("", [{"role": "user", "content": text}])
return self._chat("", [{"role": "user", "content": text}])

View File

@ -21,6 +21,8 @@ from dataclasses import dataclass
from typing import Any
import networkx as nx
from graphrag.extractor import Extractor
from rag.nlp import is_english
import editdistance
from graphrag.entity_resolution_prompt import ENTITY_RESOLUTION_PROMPT
@ -39,10 +41,9 @@ class EntityResolutionResult:
output: nx.Graph
class EntityResolution:
class EntityResolution(Extractor):
"""Entity resolution class definition."""
_llm: CompletionLLM
_resolution_prompt: str
_output_formatter_prompt: str
_on_error: ErrorHandlerFn
@ -117,7 +118,7 @@ class EntityResolution:
}
text = perform_variable_replacements(self._resolution_prompt, variables=variables)
response = self._llm.chat(text, [{"role": "user", "content": "Output:"}], gen_conf)
response = self._chat(text, [{"role": "user", "content": "Output:"}], gen_conf)
result = self._process_results(len(candidate_resolution_i[1]), response,
prompt_variables.get(self._record_delimiter_key,
DEFAULT_RECORD_DELIMITER),

34
graphrag/extractor.py Normal file
View File

@ -0,0 +1,34 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from graphrag.utils import get_llm_cache, set_llm_cache
from rag.llm.chat_model import Base as CompletionLLM
class Extractor:
_llm: CompletionLLM
def __init__(self, llm_invoker: CompletionLLM):
self._llm = llm_invoker
def _chat(self, system, history, gen_conf):
response = get_llm_cache(self._llm.llm_name, system, history, gen_conf)
if response:
return response
response = self._llm.chat(system, history, gen_conf)
if response.find("**ERROR**") >= 0:
raise Exception(response)
set_llm_cache(self._llm.llm_name, system, response, history, gen_conf)
return response

View File

@ -12,6 +12,8 @@ import traceback
from typing import Any, Callable, Mapping
from dataclasses import dataclass
import tiktoken
from graphrag.extractor import Extractor
from graphrag.graph_prompt import GRAPH_EXTRACTION_PROMPT, CONTINUE_PROMPT, LOOP_PROMPT
from graphrag.utils import ErrorHandlerFn, perform_variable_replacements, clean_str
from rag.llm.chat_model import Base as CompletionLLM
@ -34,10 +36,9 @@ class GraphExtractionResult:
source_docs: dict[Any, Any]
class GraphExtractor:
class GraphExtractor(Extractor):
"""Unipartite graph extractor class definition."""
_llm: CompletionLLM
_join_descriptions: bool
_tuple_delimiter_key: str
_record_delimiter_key: str
@ -165,9 +166,7 @@ class GraphExtractor:
token_count = 0
text = perform_variable_replacements(self._extraction_prompt, variables=variables)
gen_conf = {"temperature": 0.3}
response = self._llm.chat(text, [{"role": "user", "content": "Output:"}], gen_conf)
if response.find("**ERROR**") >= 0:
raise Exception(response)
response = self._chat(text, [{"role": "user", "content": "Output:"}], gen_conf)
token_count = num_tokens_from_string(text + response)
results = response or ""
@ -177,9 +176,7 @@ class GraphExtractor:
for i in range(self._max_gleanings):
text = perform_variable_replacements(CONTINUE_PROMPT, history=history, variables=variables)
history.append({"role": "user", "content": text})
response = self._llm.chat("", history, gen_conf)
if response.find("**ERROR**") >=0:
raise Exception(response)
response = self._chat("", history, gen_conf)
results += response or ""
# if this is the final glean, don't bother updating the continuation flag
@ -187,7 +184,7 @@ class GraphExtractor:
break
history.append({"role": "assistant", "content": response})
history.append({"role": "user", "content": LOOP_PROMPT})
continuation = self._llm.chat("", history, self._loop_args)
continuation = self._chat("", history, self._loop_args)
if continuation != "YES":
break

View File

@ -23,6 +23,7 @@ from typing import Any
from concurrent.futures import ThreadPoolExecutor
from dataclasses import dataclass
from graphrag.extractor import Extractor
from graphrag.mind_map_prompt import MIND_MAP_EXTRACTION_PROMPT
from graphrag.utils import ErrorHandlerFn, perform_variable_replacements
from rag.llm.chat_model import Base as CompletionLLM
@ -37,8 +38,7 @@ class MindMapResult:
output: dict
class MindMapExtractor:
_llm: CompletionLLM
class MindMapExtractor(Extractor):
_input_text_key: str
_mind_map_prompt: str
_on_error: ErrorHandlerFn
@ -190,7 +190,7 @@ class MindMapExtractor:
}
text = perform_variable_replacements(self._mind_map_prompt, variables=variables)
gen_conf = {"temperature": 0.5}
response = self._llm.chat(text, [{"role": "user", "content": "Output:"}], gen_conf)
response = self._chat(text, [{"role": "user", "content": "Output:"}], gen_conf)
response = re.sub(r"```[^\n]*", "", response)
logging.debug(response)
logging.debug(self._todict(markdown_to_json.dictify(response)))

View File

@ -6,9 +6,15 @@ Reference:
"""
import html
import json
import re
from typing import Any, Callable
import numpy as np
import xxhash
from rag.utils.redis_conn import REDIS_CONN
ErrorHandlerFn = Callable[[BaseException | None, str | None, dict | None], None]
@ -60,3 +66,49 @@ def dict_has_keys_with_types(
return False
return True
def get_llm_cache(llmnm, txt, history, genconf):
hasher = xxhash.xxh64()
hasher.update(str(llmnm).encode("utf-8"))
hasher.update(str(txt).encode("utf-8"))
hasher.update(str(history).encode("utf-8"))
hasher.update(str(genconf).encode("utf-8"))
k = hasher.hexdigest()
bin = REDIS_CONN.get(k)
if not bin:
return
return bin.decode("utf-8")
def set_llm_cache(llmnm, txt, v: str, history, genconf):
hasher = xxhash.xxh64()
hasher.update(str(llmnm).encode("utf-8"))
hasher.update(str(txt).encode("utf-8"))
hasher.update(str(history).encode("utf-8"))
hasher.update(str(genconf).encode("utf-8"))
k = hasher.hexdigest()
REDIS_CONN.set(k, v.encode("utf-8"), 24*3600)
def get_embed_cache(llmnm, txt):
hasher = xxhash.xxh64()
hasher.update(str(llmnm).encode("utf-8"))
hasher.update(str(txt).encode("utf-8"))
k = hasher.hexdigest()
bin = REDIS_CONN.get(k)
if not bin:
return
return np.array(json.loads(bin.decode("utf-8")))
def set_embed_cache(llmnm, txt, arr):
hasher = xxhash.xxh64()
hasher.update(str(llmnm).encode("utf-8"))
hasher.update(str(txt).encode("utf-8"))
k = hasher.hexdigest()
arr = json.dumps(arr.tolist() if isinstance(arr, np.ndarray) else arr)
REDIS_CONN.set(k, arr.encode("utf-8"), 24*3600)

View File

@ -21,6 +21,7 @@ import umap
import numpy as np
from sklearn.mixture import GaussianMixture
from graphrag.utils import get_llm_cache, get_embed_cache, set_embed_cache, set_llm_cache
from rag.utils import truncate
@ -33,6 +34,27 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
self._prompt = prompt
self._max_token = max_token
def _chat(self, system, history, gen_conf):
response = get_llm_cache(self._llm_model.llm_name, system, history, gen_conf)
if response:
return response
response = self._llm_model.chat(system, history, gen_conf)
if response.find("**ERROR**") >= 0:
raise Exception(response)
set_llm_cache(self._llm_model.llm_name, system, response, history, gen_conf)
return response
def _embedding_encode(self, txt):
response = get_embed_cache(self._embd_model.llm_name, txt)
if response:
return response
embds, _ = self._embd_model.encode([txt])
if len(embds) < 1 or len(embds[0]) < 1:
raise Exception("Embedding error: ")
embds = embds[0]
set_embed_cache(self._embd_model.llm_name, txt, embds)
return embds
def _get_optimal_clusters(self, embeddings: np.ndarray, random_state: int):
max_clusters = min(self._max_cluster, len(embeddings))
n_clusters = np.arange(1, max_clusters)
@ -57,7 +79,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
texts = [chunks[i][0] for i in ck_idx]
len_per_chunk = int((self._llm_model.max_length - self._max_token) / len(texts))
cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts])
cnt = self._llm_model.chat("You're a helpful assistant.",
cnt = self._chat("You're a helpful assistant.",
[{"role": "user",
"content": self._prompt.format(cluster_content=cluster_content)}],
{"temperature": 0.3, "max_tokens": self._max_token}
@ -67,9 +89,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
logging.debug(f"SUM: {cnt}")
embds, _ = self._embd_model.encode([cnt])
with lock:
if not len(embds[0]):
return
chunks.append((cnt, embds[0]))
chunks.append((cnt, self._embedding_encode(cnt)))
except Exception as e:
logging.exception("summarize got exception")
return e

View File

@ -19,6 +19,8 @@
import sys
from api.utils.log_utils import initRootLogger
from graphrag.utils import get_llm_cache, set_llm_cache
CONSUMER_NO = "0" if len(sys.argv) < 2 else sys.argv[1]
CONSUMER_NAME = "task_executor_" + CONSUMER_NO
initRootLogger(CONSUMER_NAME)
@ -232,9 +234,6 @@ def build_chunks(task, progress_callback):
if not d.get("image"):
_ = d.pop("image", None)
d["img_id"] = ""
d["page_num_int"] = []
d["position_int"] = []
d["top_int"] = []
docs.append(d)
continue
@ -262,8 +261,16 @@ def build_chunks(task, progress_callback):
progress_callback(msg="Start to generate keywords for every chunk ...")
chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
for d in docs:
d["important_kwd"] = keyword_extraction(chat_mdl, d["content_with_weight"],
task["parser_config"]["auto_keywords"]).split(",")
cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], "keywords",
{"topn": task["parser_config"]["auto_keywords"]})
if not cached:
cached = keyword_extraction(chat_mdl, d["content_with_weight"],
task["parser_config"]["auto_keywords"])
if cached:
set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, "keywords",
{"topn": task["parser_config"]["auto_keywords"]})
d["important_kwd"] = cached.split(",")
d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
progress_callback(msg="Keywords generation completed in {:.2f}s".format(timer() - st))
@ -272,7 +279,15 @@ def build_chunks(task, progress_callback):
progress_callback(msg="Start to generate questions for every chunk ...")
chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
for d in docs:
d["question_kwd"] = question_proposal(chat_mdl, d["content_with_weight"], task["parser_config"]["auto_questions"]).split("\n")
cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], "question",
{"topn": task["parser_config"]["auto_questions"]})
if not cached:
cached = question_proposal(chat_mdl, d["content_with_weight"], task["parser_config"]["auto_questions"])
if cached:
set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, "question",
{"topn": task["parser_config"]["auto_questions"]})
d["question_kwd"] = cached.split("\n")
d["question_tks"] = rag_tokenizer.tokenize("\n".join(d["question_kwd"]))
progress_callback(msg="Question generation completed in {:.2f}s".format(timer() - st))