diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml
index 81e666edd..8a3455674 100644
--- a/.github/workflows/tests.yml
+++ b/.github/workflows/tests.yml
@@ -65,7 +65,7 @@ jobs:
- name: Start ragflow:nightly-slim
run: |
- echo "RAGFLOW_IMAGE=infiniflow/ragflow:nightly-slim" >> docker/.env
+ echo -e "\nRAGFLOW_IMAGE=infiniflow/ragflow:nightly-slim" >> docker/.env
sudo docker compose -f docker/docker-compose.yml up -d
- name: Stop ragflow:nightly-slim
@@ -75,7 +75,7 @@ jobs:
- name: Start ragflow:nightly
run: |
- echo "RAGFLOW_IMAGE=infiniflow/ragflow:nightly" >> docker/.env
+ echo -e "\nRAGFLOW_IMAGE=infiniflow/ragflow:nightly" >> docker/.env
sudo docker compose -f docker/docker-compose.yml up -d
- name: Run sdk tests against Elasticsearch
diff --git a/README.md b/README.md
index ae1fe788a..d4e2ba811 100644
--- a/README.md
+++ b/README.md
@@ -22,7 +22,7 @@
-
+
@@ -173,7 +173,7 @@ releases! 🌟
3. Start up the server using the pre-built Docker images:
- > The command below downloads the `v0.16.0-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.16.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0` for the full edition `v0.16.0`.
+ > The command below downloads the `v0.17.0-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.17.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0` for the full edition `v0.17.0`.
```bash
$ cd ragflow/docker
@@ -182,8 +182,8 @@ releases! 🌟
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|-------------------|-----------------|-----------------------|--------------------------|
- | v0.16.0 | ≈9 | :heavy_check_mark: | Stable release |
- | v0.16.0-slim | ≈2 | ❌ | Stable release |
+ | v0.17.0 | ≈9 | :heavy_check_mark: | Stable release |
+ | v0.17.0-slim | ≈2 | ❌ | Stable release |
| nightly | ≈9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | ≈2 | ❌ | _Unstable_ nightly build |
diff --git a/README_id.md b/README_id.md
index da0b46396..fc20c9889 100644
--- a/README_id.md
+++ b/README_id.md
@@ -22,7 +22,7 @@
-
+
@@ -166,7 +166,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
3. Bangun image Docker pre-built dan jalankan server:
- > Perintah di bawah ini mengunduh edisi v0.16.0-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.16.0-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0 untuk edisi lengkap v0.16.0.
+ > Perintah di bawah ini mengunduh edisi v0.17.0-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.17.0-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0 untuk edisi lengkap v0.17.0.
```bash
$ cd ragflow/docker
@@ -174,9 +174,9 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
- |-------------------|-----------------|-----------------------|--------------------------|
- | v0.16.0 | ≈9 | :heavy_check_mark: | Stable release |
- | v0.16.0-slim | ≈2 | ❌ | Stable release |
+ | ----------------- | --------------- | --------------------- | ------------------------ |
+ | v0.17.0 | ≈9 | :heavy_check_mark: | Stable release |
+ | v0.17.0-slim | ≈2 | ❌ | Stable release |
| nightly | ≈9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | ≈2 | ❌ | _Unstable_ nightly build |
diff --git a/README_ja.md b/README_ja.md
index fb45ba318..37e4e8527 100644
--- a/README_ja.md
+++ b/README_ja.md
@@ -22,7 +22,7 @@
-
+
@@ -146,7 +146,7 @@
3. ビルド済みの Docker イメージをビルドし、サーバーを起動する:
- > 以下のコマンドは、RAGFlow Docker イメージの v0.16.0-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.16.0-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.16.0 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0 と設定します。
+ > 以下のコマンドは、RAGFlow Docker イメージの v0.17.0-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.17.0-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.17.0 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0 と設定します。
```bash
$ cd ragflow/docker
@@ -154,9 +154,9 @@
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
- |-------------------|-----------------|-----------------------|--------------------------|
- | v0.16.0 | ≈9 | :heavy_check_mark: | Stable release |
- | v0.16.0-slim | ≈2 | ❌ | Stable release |
+ | ----------------- | --------------- | --------------------- | ------------------------ |
+ | v0.17.0 | ≈9 | :heavy_check_mark: | Stable release |
+ | v0.17.0-slim | ≈2 | ❌ | Stable release |
| nightly | ≈9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | ≈2 | ❌ | _Unstable_ nightly build |
diff --git a/README_ko.md b/README_ko.md
index c97deb14e..89ed4058c 100644
--- a/README_ko.md
+++ b/README_ko.md
@@ -22,7 +22,7 @@
-
+
@@ -147,7 +147,7 @@
3. 미리 빌드된 Docker 이미지를 생성하고 서버를 시작하세요:
- > 아래 명령어는 RAGFlow Docker 이미지의 v0.16.0-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.16.0-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.16.0을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0로 설정합니다.
+ > 아래 명령어는 RAGFlow Docker 이미지의 v0.17.0-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.17.0-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.17.0을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0로 설정합니다.
```bash
$ cd ragflow/docker
@@ -155,9 +155,9 @@
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
- |-------------------|-----------------|-----------------------|--------------------------|
- | v0.16.0 | ≈9 | :heavy_check_mark: | Stable release |
- | v0.16.0-slim | ≈2 | ❌ | Stable release |
+ | ----------------- | --------------- | --------------------- | ------------------------ |
+ | v0.17.0 | ≈9 | :heavy_check_mark: | Stable release |
+ | v0.17.0-slim | ≈2 | ❌ | Stable release |
| nightly | ≈9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | ≈2 | ❌ | _Unstable_ nightly build |
diff --git a/README_pt_br.md b/README_pt_br.md
index 3d1b38077..3bb9f4c8a 100644
--- a/README_pt_br.md
+++ b/README_pt_br.md
@@ -22,7 +22,7 @@
-
+
@@ -166,7 +166,7 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
3. Inicie o servidor usando as imagens Docker pré-compiladas:
- > O comando abaixo baixa a edição `v0.16.0-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.16.0-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0` para a edição completa `v0.16.0`.
+ > O comando abaixo baixa a edição `v0.17.0-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.17.0-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0` para a edição completa `v0.17.0`.
```bash
$ cd ragflow/docker
@@ -174,9 +174,9 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
```
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
- |-----------------------|------------------------|---------------------------------|--------------------------|
- | v0.16.0 | ~9 | :heavy_check_mark: | Lançamento estável |
- | v0.16.0-slim | ~2 | ❌ | Lançamento estável |
+ | --------------------- | ---------------------- | ------------------------------- | ------------------------ |
+ | v0.17.0 | ~9 | :heavy_check_mark: | Lançamento estável |
+ | v0.17.0-slim | ~2 | ❌ | Lançamento estável |
| nightly | ~9 | :heavy_check_mark: | _Instável_ build noturno |
| nightly-slim | ~2 | ❌ | _Instável_ build noturno |
diff --git a/README_tzh.md b/README_tzh.md
index 7dcb46db5..ba2ca9f58 100644
--- a/README_tzh.md
+++ b/README_tzh.md
@@ -21,7 +21,7 @@
-
+
@@ -145,7 +145,7 @@
3. 進入 **docker** 資料夾,利用事先編譯好的 Docker 映像啟動伺服器:
- > 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.16.0-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.16.0-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0` 來下載 RAGFlow 鏡像的 `v0.16.0` 完整發行版。
+ > 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.17.0-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.17.0-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0` 來下載 RAGFlow 鏡像的 `v0.17.0` 完整發行版。
```bash
$ cd ragflow/docker
@@ -153,9 +153,9 @@
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
- |-------------------|-----------------|-----------------------|--------------------------|
- | v0.16.0 | ≈9 | :heavy_check_mark: | Stable release |
- | v0.16.0-slim | ≈2 | ❌ | Stable release |
+ | ----------------- | --------------- | --------------------- | ------------------------ |
+ | v0.17.0 | ≈9 | :heavy_check_mark: | Stable release |
+ | v0.17.0-slim | ≈2 | ❌ | Stable release |
| nightly | ≈9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | ≈2 | ❌ | _Unstable_ nightly build |
diff --git a/README_zh.md b/README_zh.md
index a52b4d505..8a44b0c6b 100644
--- a/README_zh.md
+++ b/README_zh.md
@@ -22,7 +22,7 @@
-
+
@@ -146,7 +146,7 @@
3. 进入 **docker** 文件夹,利用提前编译好的 Docker 镜像启动服务器:
- > 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.16.0-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.16.0-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0` 来下载 RAGFlow 镜像的 `v0.16.0` 完整发行版。
+ > 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.17.0-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.17.0-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0` 来下载 RAGFlow 镜像的 `v0.17.0` 完整发行版。
```bash
$ cd ragflow/docker
@@ -154,9 +154,9 @@
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
- |-------------------|-----------------|-----------------------|--------------------------|
- | v0.16.0 | ≈9 | :heavy_check_mark: | Stable release |
- | v0.16.0-slim | ≈2 | ❌ | Stable release |
+ | ----------------- | --------------- | --------------------- | ------------------------ |
+ | v0.17.0 | ≈9 | :heavy_check_mark: | Stable release |
+ | v0.17.0-slim | ≈2 | ❌ | Stable release |
| nightly | ≈9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | ≈2 | ❌ | _Unstable_ nightly build |
diff --git a/docker/.env b/docker/.env
index ff256e39a..246bbed2c 100644
--- a/docker/.env
+++ b/docker/.env
@@ -80,13 +80,13 @@ REDIS_PASSWORD=infini_rag_flow
SVR_HTTP_PORT=9380
# The RAGFlow Docker image to download.
-# Defaults to the v0.16.0-slim edition, which is the RAGFlow Docker image without embedding models.
-RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0-slim
+# Defaults to the v0.17.0-slim edition, which is the RAGFlow Docker image without embedding models.
+RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0-slim
#
# To download the RAGFlow Docker image with embedding models, uncomment the following line instead:
-# RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0
+# RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0
#
-# The Docker image of the v0.16.0 edition includes:
+# The Docker image of the v0.17.0 edition includes:
# - Built-in embedding models:
# - BAAI/bge-large-zh-v1.5
# - BAAI/bge-reranker-v2-m3
@@ -145,4 +145,4 @@ TIMEZONE='Asia/Shanghai'
# SECRET_KEY=eee
# ENDPOINT=http://oss-cn-hangzhou.aliyuncs.com
# REGION=cn-hangzhou
-# BUCKET=ragflow65536
\ No newline at end of file
+# BUCKET=ragflow65536
diff --git a/docker/README.md b/docker/README.md
index 1396aa5be..601def59b 100644
--- a/docker/README.md
+++ b/docker/README.md
@@ -78,8 +78,8 @@ The [.env](./.env) file contains important environment variables for Docker.
- `RAGFLOW-IMAGE`
The Docker image edition. Available editions:
- - `infiniflow/ragflow:v0.16.0-slim` (default): The RAGFlow Docker image without embedding models.
- - `infiniflow/ragflow:v0.16.0`: The RAGFlow Docker image with embedding models including:
+ - `infiniflow/ragflow:v0.17.0-slim` (default): The RAGFlow Docker image without embedding models.
+ - `infiniflow/ragflow:v0.17.0`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `BAAI/bge-reranker-v2-m3`
diff --git a/docs/configurations.md b/docs/configurations.md
index a4c0b0207..d494d2b39 100644
--- a/docs/configurations.md
+++ b/docs/configurations.md
@@ -97,8 +97,8 @@ The [.env](https://github.com/infiniflow/ragflow/blob/main/docker/.env) file con
- `RAGFLOW-IMAGE`
The Docker image edition. Available editions:
- - `infiniflow/ragflow:v0.16.0-slim` (default): The RAGFlow Docker image without embedding models.
- - `infiniflow/ragflow:v0.16.0`: The RAGFlow Docker image with embedding models including:
+ - `infiniflow/ragflow:v0.17.0-slim` (default): The RAGFlow Docker image without embedding models.
+ - `infiniflow/ragflow:v0.17.0`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `BAAI/bge-reranker-v2-m3`
diff --git a/docs/guides/configure_knowledge_base/configure_knowledge_base.md b/docs/guides/configure_knowledge_base/configure_knowledge_base.md
index 355e7bccc..4560f9082 100644
--- a/docs/guides/configure_knowledge_base/configure_knowledge_base.md
+++ b/docs/guides/configure_knowledge_base/configure_knowledge_base.md
@@ -128,7 +128,7 @@ RAGFlow uses multiple recall of both full-text search and vector search in its c
## Search for knowledge base
-As of RAGFlow v0.16.0, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
+As of RAGFlow v0.17.0, the search feature is still in a rudimentary form, supporting only knowledge base search by name.

diff --git a/docs/guides/configure_knowledge_base/construct_knowledge_graph.md b/docs/guides/configure_knowledge_base/construct_knowledge_graph.md
index f49be05b3..49c59357f 100644
--- a/docs/guides/configure_knowledge_base/construct_knowledge_graph.md
+++ b/docs/guides/configure_knowledge_base/construct_knowledge_graph.md
@@ -13,7 +13,7 @@ To enhance multi-hop question-answering, RAGFlow adds a knowledge graph construc

-As of v0.16.0, RAGFlow supports constructing a knowledge graph on a knowledge base, allowing you to construct a *unified* graph across multiple files within your knowledge base. When a newly uploaded file starts parsing, the generated graph will automatically update.
+As of v0.17.0, RAGFlow supports constructing a knowledge graph on a knowledge base, allowing you to construct a *unified* graph across multiple files within your knowledge base. When a newly uploaded file starts parsing, the generated graph will automatically update.
:::danger WARNING
Constructing a knowledge graph requires significant memory, computational resources, and tokens.
diff --git a/docs/guides/manage_files.md b/docs/guides/manage_files.md
index f9921af5a..cac66d7a8 100644
--- a/docs/guides/manage_files.md
+++ b/docs/guides/manage_files.md
@@ -81,4 +81,4 @@ RAGFlow's file management allows you to download an uploaded file:

-> As of RAGFlow v0.16.0, bulk download is not supported, nor can you download an entire folder.
+> As of RAGFlow v0.17.0, bulk download is not supported, nor can you download an entire folder.
diff --git a/docs/guides/upgrade_ragflow.mdx b/docs/guides/upgrade_ragflow.mdx
index 122d90e85..fa63788f2 100644
--- a/docs/guides/upgrade_ragflow.mdx
+++ b/docs/guides/upgrade_ragflow.mdx
@@ -62,16 +62,16 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
git clone https://github.com/infiniflow/ragflow.git
```
-2. Switch to the latest, officially published release, e.g., `v0.16.0`:
+2. Switch to the latest, officially published release, e.g., `v0.17.0`:
```bash
- git checkout -f v0.16.0
+ git checkout -f v0.17.0
```
3. Update **ragflow/docker/.env** as follows:
```bash
- RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0
+ RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.0
```
4. Update the RAGFlow image and restart RAGFlow:
diff --git a/docs/quickstart.mdx b/docs/quickstart.mdx
index 7faae8c17..5dca6c83f 100644
--- a/docs/quickstart.mdx
+++ b/docs/quickstart.mdx
@@ -39,7 +39,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
`vm.max_map_count`. This value sets the maximum number of memory map areas a process may have. Its default value is 65530. While most applications require fewer than a thousand maps, reducing this value can result in abnormal behaviors, and the system will throw out-of-memory errors when a process reaches the limitation.
- RAGFlow v0.16.0 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
+ RAGFlow v0.17.0 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
= '3.12' and sys_platform == 'darwin'",
@@ -150,7 +149,7 @@ wheels = [
[[package]]
name = "akshare"
-version = "1.16.14"
+version = "1.16.16"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
dependencies = [
{ name = "akracer", marker = "sys_platform == 'linux'" },
@@ -169,9 +168,9 @@ dependencies = [
{ name = "urllib3" },
{ name = "xlrd" },
]
-sdist = { url = "https://mirrors.aliyun.com/pypi/packages/62/eb/9a7626270108b91be8f901aa72d987f801b3125b2fb61ef9b7feb0ea1945/akshare-1.16.14.tar.gz", hash = "sha256:0b185c5a798609629e101c74807734044eb50c84960575d79126d16b425d66f5" }
+sdist = { url = "https://mirrors.aliyun.com/pypi/packages/1e/1f/1b33cae646ce80c90dd35b4f6b1cac1803d101bfe48cc97c0702035430ac/akshare-1.16.16.tar.gz", hash = "sha256:8ce5401351939ba8786eed052965da29ee68f60a48565fd827f6d906d35ad3d2" }
wheels = [
- { url = "https://mirrors.aliyun.com/pypi/packages/46/00/35c7f2c95a6ddd6a99a6f371cd89835dafab657ad8a6d7c9309b6f34f5d9/akshare-1.16.14-py3-none-any.whl", hash = "sha256:6156b742bfe6bee9d625f400b4c67df441fe9fe54aca35901032b80b11ba004f" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/41/ca/7d35ee68baad0ffd2ecd98cd52255c55b10863a3ae17ed11aabfa122a4be/akshare-1.16.16-py3-none-any.whl", hash = "sha256:564c45d370699c12ecfe87d39dc8fef7a623e5386ade5f14a2565fb976c634d0" },
]
[[package]]
@@ -1088,7 +1087,6 @@ wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/44/02/53f0cf0bf0cd629ba6c2cc13f2f9db24323459e9c19463783d890a540a96/datrie-0.8.2-pp273-pypy_73-win32.whl", hash = "sha256:b07bd5fdfc3399a6dab86d6e35c72b1dbd598e80c97509c7c7518ab8774d3fda" },
]
-
[[package]]
name = "decorator"
version = "5.2.1"
@@ -1796,7 +1794,7 @@ wheels = [
[[package]]
name = "google-cloud-bigquery"
-version = "3.29.0"
+version = "3.30.0"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
dependencies = [
{ name = "google-api-core", extra = ["grpc"] },
@@ -1807,9 +1805,9 @@ dependencies = [
{ name = "python-dateutil" },
{ name = "requests" },
]
-sdist = { url = "https://mirrors.aliyun.com/pypi/packages/21/36/87875a9775985849f18d4b3e320e4acdeb5232db3d49cfa6269e7c7867b8/google_cloud_bigquery-3.29.0.tar.gz", hash = "sha256:fafc2b455ffce3bcc6ce0e884184ef50b6a11350a83b91e327fadda4d5566e72" }
+sdist = { url = "https://mirrors.aliyun.com/pypi/packages/f1/2f/3dda76b3ec029578838b1fe6396e6b86eb574200352240e23dea49265bb7/google_cloud_bigquery-3.30.0.tar.gz", hash = "sha256:7e27fbafc8ed33cc200fe05af12ecd74d279fe3da6692585a3cef7aee90575b6" }
wheels = [
- { url = "https://mirrors.aliyun.com/pypi/packages/68/60/9e1430f0fe17f8e8e931eff468021516f74f2573f261221529767dd59591/google_cloud_bigquery-3.29.0-py2.py3-none-any.whl", hash = "sha256:5453a4eabe50118254eda9778f3d7dad413490de5f7046b5e66c98f5a1580308" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/0c/6d/856a6ca55c1d9d99129786c929a27dd9d31992628ebbff7f5d333352981f/google_cloud_bigquery-3.30.0-py2.py3-none-any.whl", hash = "sha256:f4d28d846a727f20569c9b2d2f4fa703242daadcb2ec4240905aa485ba461877" },
]
[[package]]
@@ -2891,7 +2889,7 @@ wheels = [
[[package]]
name = "matplotlib"
-version = "3.10.0"
+version = "3.10.1"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
dependencies = [
{ name = "contourpy" },
@@ -2904,29 +2902,29 @@ dependencies = [
{ name = "pyparsing" },
{ name = "python-dateutil" },
]
-sdist = { url = "https://mirrors.aliyun.com/pypi/packages/68/dd/fa2e1a45fce2d09f4aea3cee169760e672c8262325aa5796c49d543dc7e6/matplotlib-3.10.0.tar.gz", hash = "sha256:b886d02a581b96704c9d1ffe55709e49b4d2d52709ccebc4be42db856e511278" }
+sdist = { url = "https://mirrors.aliyun.com/pypi/packages/2f/08/b89867ecea2e305f408fbb417139a8dd941ecf7b23a2e02157c36da546f0/matplotlib-3.10.1.tar.gz", hash = "sha256:e8d2d0e3881b129268585bf4765ad3ee73a4591d77b9a18c214ac7e3a79fb2ba" }
wheels = [
- { url = "https://mirrors.aliyun.com/pypi/packages/09/ec/3cdff7b5239adaaacefcc4f77c316dfbbdf853c4ed2beec467e0fec31b9f/matplotlib-3.10.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:2c5829a5a1dd5a71f0e31e6e8bb449bc0ee9dbfb05ad28fc0c6b55101b3a4be6" },
- { url = "https://mirrors.aliyun.com/pypi/packages/41/f2/b518f2c7f29895c9b167bf79f8529c63383ae94eaf49a247a4528e9a148d/matplotlib-3.10.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a2a43cbefe22d653ab34bb55d42384ed30f611bcbdea1f8d7f431011a2e1c62e" },
- { url = "https://mirrors.aliyun.com/pypi/packages/ed/8d/45754b4affdb8f0d1a44e4e2bcd932cdf35b256b60d5eda9f455bb293ed0/matplotlib-3.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:607b16c8a73943df110f99ee2e940b8a1cbf9714b65307c040d422558397dac5" },
- { url = "https://mirrors.aliyun.com/pypi/packages/09/5a/a113495110ae3e3395c72d82d7bc4802902e46dc797f6b041e572f195c56/matplotlib-3.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01d2b19f13aeec2e759414d3bfe19ddfb16b13a1250add08d46d5ff6f9be83c6" },
- { url = "https://mirrors.aliyun.com/pypi/packages/12/b1/8b1655b4c9ed4600c817c419f7eaaf70082630efd7556a5b2e77a8a3cdaf/matplotlib-3.10.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:5e6c6461e1fc63df30bf6f80f0b93f5b6784299f721bc28530477acd51bfc3d1" },
- { url = "https://mirrors.aliyun.com/pypi/packages/5a/85/b9a54d64585a6b8737a78a61897450403c30f39e0bd3214270bb0b96f002/matplotlib-3.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:994c07b9d9fe8d25951e3202a68c17900679274dadfc1248738dcfa1bd40d7f3" },
- { url = "https://mirrors.aliyun.com/pypi/packages/0c/f1/e37f6c84d252867d7ddc418fff70fc661cfd363179263b08e52e8b748e30/matplotlib-3.10.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:fd44fc75522f58612ec4a33958a7e5552562b7705b42ef1b4f8c0818e304a363" },
- { url = "https://mirrors.aliyun.com/pypi/packages/c7/8b/92e9da1f28310a1f6572b5c55097b0c0ceb5e27486d85fb73b54f5a9b939/matplotlib-3.10.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c58a9622d5dbeb668f407f35f4e6bfac34bb9ecdcc81680c04d0258169747997" },
- { url = "https://mirrors.aliyun.com/pypi/packages/c5/cb/49e83f0fd066937a5bd3bc5c5d63093703f3637b2824df8d856e0558beef/matplotlib-3.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:845d96568ec873be63f25fa80e9e7fae4be854a66a7e2f0c8ccc99e94a8bd4ef" },
- { url = "https://mirrors.aliyun.com/pypi/packages/b2/7d/2d873209536b9ee17340754118a2a17988bc18981b5b56e6715ee07373ac/matplotlib-3.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5439f4c5a3e2e8eab18e2f8c3ef929772fd5641876db71f08127eed95ab64683" },
- { url = "https://mirrors.aliyun.com/pypi/packages/b8/03/57d6cbbe85c61fe4cbb7c94b54dce443d68c21961830833a1f34d056e5ea/matplotlib-3.10.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4673ff67a36152c48ddeaf1135e74ce0d4bce1bbf836ae40ed39c29edf7e2765" },
- { url = "https://mirrors.aliyun.com/pypi/packages/14/cf/e382598f98be11bf51dd0bc60eca44a517f6793e3dc8b9d53634a144620c/matplotlib-3.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:7e8632baebb058555ac0cde75db885c61f1212e47723d63921879806b40bec6a" },
- { url = "https://mirrors.aliyun.com/pypi/packages/44/c7/6b2d8cb7cc251d53c976799cacd3200add56351c175ba89ab9cbd7c1e68a/matplotlib-3.10.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4659665bc7c9b58f8c00317c3c2a299f7f258eeae5a5d56b4c64226fca2f7c59" },
- { url = "https://mirrors.aliyun.com/pypi/packages/42/2a/6d66d0fba41e13e9ca6512a0a51170f43e7e7ed3a8dfa036324100775612/matplotlib-3.10.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d44cb942af1693cced2604c33a9abcef6205601c445f6d0dc531d813af8a2f5a" },
- { url = "https://mirrors.aliyun.com/pypi/packages/90/60/2a60342b27b90a16bada939a85e29589902b41073f59668b904b15ea666c/matplotlib-3.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a994f29e968ca002b50982b27168addfd65f0105610b6be7fa515ca4b5307c95" },
- { url = "https://mirrors.aliyun.com/pypi/packages/a7/b2/d872fc3d753516870d520595ddd8ce4dd44fa797a240999f125f58521ad7/matplotlib-3.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9b0558bae37f154fffda54d779a592bc97ca8b4701f1c710055b609a3bac44c8" },
- { url = "https://mirrors.aliyun.com/pypi/packages/f4/bd/b2f60cf7f57d014ab33e4f74602a2b5bdc657976db8196bbc022185f6f9c/matplotlib-3.10.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:503feb23bd8c8acc75541548a1d709c059b7184cde26314896e10a9f14df5f12" },
- { url = "https://mirrors.aliyun.com/pypi/packages/9f/6e/264673e64001b99d747aff5a288eca82826c024437a3694e19aed1decf46/matplotlib-3.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:c40ba2eb08b3f5de88152c2333c58cee7edcead0a2a0d60fcafa116b17117adc" },
- { url = "https://mirrors.aliyun.com/pypi/packages/32/5f/29def7ce4e815ab939b56280976ee35afffb3bbdb43f332caee74cb8c951/matplotlib-3.10.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:81713dd0d103b379de4516b861d964b1d789a144103277769238c732229d7f03" },
- { url = "https://mirrors.aliyun.com/pypi/packages/de/6d/d570383c9f7ca799d0a54161446f9ce7b17d6c50f2994b653514bcaa108f/matplotlib-3.10.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:359f87baedb1f836ce307f0e850d12bb5f1936f70d035561f90d41d305fdacea" },
- { url = "https://mirrors.aliyun.com/pypi/packages/c9/b4/680aa700d99b48e8c4393fa08e9ab8c49c0555ee6f4c9c0a5e8ea8dfde5d/matplotlib-3.10.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ae80dc3a4add4665cf2faa90138384a7ffe2a4e37c58d83e115b54287c4f06ef" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/ee/b1/f70e27cf1cd76ce2a5e1aa5579d05afe3236052c6d9b9a96325bc823a17e/matplotlib-3.10.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:ff2ae14910be903f4a24afdbb6d7d3a6c44da210fc7d42790b87aeac92238a16" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/26/af/5ec3d4636106718bb62503a03297125d4514f98fe818461bd9e6b9d116e4/matplotlib-3.10.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0721a3fd3d5756ed593220a8b86808a36c5031fce489adb5b31ee6dbb47dd5b2" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/a1/3d/07f9003a71b698b848c9925d05979ffa94a75cd25d1a587202f0bb58aa81/matplotlib-3.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0673b4b8f131890eb3a1ad058d6e065fb3c6e71f160089b65f8515373394698" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/12/87/9472d4513ff83b7cd864311821793ab72234fa201ab77310ec1b585d27e2/matplotlib-3.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e875b95ac59a7908978fe307ecdbdd9a26af7fa0f33f474a27fcf8c99f64a19" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/31/9e/fe74d237d2963adae8608faeb21f778cf246dbbf4746cef87cffbc82c4b6/matplotlib-3.10.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:2589659ea30726284c6c91037216f64a506a9822f8e50592d48ac16a2f29e044" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/b6/1b/025d3e59e8a4281ab463162ad7d072575354a1916aba81b6a11507dfc524/matplotlib-3.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:a97ff127f295817bc34517255c9db6e71de8eddaab7f837b7d341dee9f2f587f" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/a5/14/a1b840075be247bb1834b22c1e1d558740b0f618fe3a823740181ca557a1/matplotlib-3.10.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:057206ff2d6ab82ff3e94ebd94463d084760ca682ed5f150817b859372ec4401" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/0a/e4/300b08e3e08f9c98b0d5635f42edabf2f7a1d634e64cb0318a71a44ff720/matplotlib-3.10.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a144867dd6bf8ba8cb5fc81a158b645037e11b3e5cf8a50bd5f9917cb863adfe" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/75/f9/8d99ff5a2498a5f1ccf919fb46fb945109623c6108216f10f96428f388bc/matplotlib-3.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56c5d9fcd9879aa8040f196a235e2dcbdf7dd03ab5b07c0696f80bc6cf04bedd" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/40/b8/53fa08a5eaf78d3a7213fd6da1feec4bae14a81d9805e567013811ff0e85/matplotlib-3.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0f69dc9713e4ad2fb21a1c30e37bd445d496524257dfda40ff4a8efb3604ab5c" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/40/87/4397d2ce808467af86684a622dd112664553e81752ea8bf61bdd89d24a41/matplotlib-3.10.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4c59af3e8aca75d7744b68e8e78a669e91ccbcf1ac35d0102a7b1b46883f1dd7" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/d7/68/0d03098b3feb786cbd494df0aac15b571effda7f7cbdec267e8a8d398c16/matplotlib-3.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:11b65088c6f3dae784bc72e8d039a2580186285f87448babb9ddb2ad0082993a" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/7c/1d/5e0dc3b59c034e43de16f94deb68f4ad8a96b3ea00f4b37c160b7474928e/matplotlib-3.10.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:66e907a06e68cb6cfd652c193311d61a12b54f56809cafbed9736ce5ad92f107" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/7a/81/dae7e14042e74da658c3336ab9799128e09a1ee03964f2d89630b5d12106/matplotlib-3.10.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e9b4bb156abb8fa5e5b2b460196f7db7264fc6d62678c03457979e7d5254b7be" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/21/c4/22516775dcde10fc9c9571d155f90710761b028fc44f660508106c363c97/matplotlib-3.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1985ad3d97f51307a2cbfc801a930f120def19ba22864182dacef55277102ba6" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/63/23/c0615001f67ce7c96b3051d856baedc0c818a2ed84570b9bf9bde200f85d/matplotlib-3.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c96f2c2f825d1257e437a1482c5a2cf4fee15db4261bd6fc0750f81ba2b4ba3d" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/ca/c0/a07939a82aed77770514348f4568177d7dadab9787ebc618a616fe3d665e/matplotlib-3.10.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:35e87384ee9e488d8dd5a2dd7baf471178d38b90618d8ea147aced4ab59c9bea" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/a6/b6/a9405484fb40746fdc6ae4502b16a9d6e53282ba5baaf9ebe2da579f68c4/matplotlib-3.10.1-cp312-cp312-win_amd64.whl", hash = "sha256:cfd414bce89cc78a7e1d25202e979b3f1af799e416010a20ab2b5ebb3a02425c" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/c8/f6/10adb696d8cbeed2ab4c2e26ecf1c80dd3847bbf3891f4a0c362e0e08a5a/matplotlib-3.10.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:648406f1899f9a818cef8c0231b44dcfc4ff36f167101c3fd1c9151f24220fdc" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/3f/84/0603d917406072763e7f9bb37747d3d74d7ecd4b943a8c947cc3ae1cf7af/matplotlib-3.10.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:02582304e352f40520727984a5a18f37e8187861f954fea9be7ef06569cf85b4" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/fd/7d/6a8b31dd07ed856b3eae001c9129670ef75c4698fa1c2a6ac9f00a4a7054/matplotlib-3.10.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3809916157ba871bcdd33d3493acd7fe3037db5daa917ca6e77975a94cef779" },
]
[[package]]
@@ -4232,10 +4230,8 @@ wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/48/7d/0f2b09490b98cc6a902ac15dda8760c568b9c18cfe70e0ef7a16de64d53a/pycryptodomex-3.20.0-cp35-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:7a7a8f33a1f1fb762ede6cc9cbab8f2a9ba13b196bfaf7bc6f0b39d2ba315a43" },
{ url = "https://mirrors.aliyun.com/pypi/packages/b0/1c/375adb14b71ee1c8d8232904e928b3e7af5bbbca7c04e4bec94fe8e90c3d/pycryptodomex-3.20.0-cp35-abi3-win32.whl", hash = "sha256:c39778fd0548d78917b61f03c1fa8bfda6cfcf98c767decf360945fe6f97461e" },
{ url = "https://mirrors.aliyun.com/pypi/packages/b2/e8/1b92184ab7e5595bf38000587e6f8cf9556ebd1bf0a583619bee2057afbd/pycryptodomex-3.20.0-cp35-abi3-win_amd64.whl", hash = "sha256:2a47bcc478741b71273b917232f521fd5704ab4b25d301669879e7273d3586cc" },
-
{ url = "https://mirrors.aliyun.com/pypi/packages/e7/c5/9140bb867141d948c8e242013ec8a8011172233c898dfdba0a2417c3169a/pycryptodomex-3.20.0-pp27-pypy_73-manylinux2010_x86_64.whl", hash = "sha256:1be97461c439a6af4fe1cf8bf6ca5936d3db252737d2f379cc6b2e394e12a458" },
{ url = "https://mirrors.aliyun.com/pypi/packages/5e/6a/04acb4978ce08ab16890c70611ebc6efd251681341617bbb9e53356dee70/pycryptodomex-3.20.0-pp27-pypy_73-win32.whl", hash = "sha256:19764605feea0df966445d46533729b645033f134baeb3ea26ad518c9fdf212c" },
-
{ url = "https://mirrors.aliyun.com/pypi/packages/eb/df/3f1ea084e43b91e6d2b6b3493cc948864c17ea5d93ff1261a03812fbfd1a/pycryptodomex-3.20.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:f2e497413560e03421484189a6b65e33fe800d3bd75590e6d78d4dfdb7accf3b" },
{ url = "https://mirrors.aliyun.com/pypi/packages/c9/f3/83ffbdfa0c8f9154bcd8866895f6cae5a3ec749da8b0840603cf936c4412/pycryptodomex-3.20.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e48217c7901edd95f9f097feaa0388da215ed14ce2ece803d3f300b4e694abea" },
{ url = "https://mirrors.aliyun.com/pypi/packages/c9/9d/c113e640aaf02af5631ae2686b742aac5cd0e1402b9d6512b1c7ec5ef05d/pycryptodomex-3.20.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d00fe8596e1cc46b44bf3907354e9377aa030ec4cd04afbbf6e899fc1e2a7781" },
@@ -4721,7 +4717,7 @@ wheels = [
[[package]]
name = "ragflow"
-version = "0.16.0"
+version = "0.17.0"
source = { virtual = "." }
dependencies = [
{ name = "akshare" },
@@ -4973,7 +4969,6 @@ requires-dist = [
{ name = "yfinance", specifier = "==0.1.96" },
{ name = "zhipuai", specifier = "==2.0.1" },
]
-provides-extras = ["full"]
[[package]]
name = "ranx"
@@ -5314,24 +5309,24 @@ wheels = [
[[package]]
name = "safetensors"
-version = "0.5.2"
+version = "0.5.3"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
-sdist = { url = "https://mirrors.aliyun.com/pypi/packages/f4/4f/2ef9ef1766f8c194b01b67a63a444d2e557c8fe1d82faf3ebd85f370a917/safetensors-0.5.2.tar.gz", hash = "sha256:cb4a8d98ba12fa016f4241932b1fc5e702e5143f5374bba0bbcf7ddc1c4cf2b8" }
+sdist = { url = "https://mirrors.aliyun.com/pypi/packages/71/7e/2d5d6ee7b40c0682315367ec7475693d110f512922d582fef1bd4a63adc3/safetensors-0.5.3.tar.gz", hash = "sha256:b6b0d6ecacec39a4fdd99cc19f4576f5219ce858e6fd8dbe7609df0b8dc56965" }
wheels = [
- { url = "https://mirrors.aliyun.com/pypi/packages/96/d1/017e31e75e274492a11a456a9e7c171f8f7911fe50735b4ec6ff37221220/safetensors-0.5.2-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:45b6092997ceb8aa3801693781a71a99909ab9cc776fbc3fa9322d29b1d3bef2" },
- { url = "https://mirrors.aliyun.com/pypi/packages/24/84/e9d3ff57ae50dd0028f301c9ee064e5087fe8b00e55696677a0413c377a7/safetensors-0.5.2-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:6d0d6a8ee2215a440e1296b843edf44fd377b055ba350eaba74655a2fe2c4bae" },
- { url = "https://mirrors.aliyun.com/pypi/packages/f1/1d/fe95f5dd73db16757b11915e8a5106337663182d0381811c81993e0014a9/safetensors-0.5.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:86016d40bcaa3bcc9a56cd74d97e654b5f4f4abe42b038c71e4f00a089c4526c" },
- { url = "https://mirrors.aliyun.com/pypi/packages/cf/21/e527961b12d5ab528c6e47b92d5f57f33563c28a972750b238b871924e49/safetensors-0.5.2-cp38-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:990833f70a5f9c7d3fc82c94507f03179930ff7d00941c287f73b6fcbf67f19e" },
- { url = "https://mirrors.aliyun.com/pypi/packages/a5/8b/1a037d7a57f86837c0b41905040369aea7d8ca1ec4b2a77592372b2ec380/safetensors-0.5.2-cp38-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3dfa7c2f3fe55db34eba90c29df94bcdac4821043fc391cb5d082d9922013869" },
- { url = "https://mirrors.aliyun.com/pypi/packages/61/3d/03dd5cfd33839df0ee3f4581a20bd09c40246d169c0e4518f20b21d5f077/safetensors-0.5.2-cp38-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:46ff2116150ae70a4e9c490d2ab6b6e1b1b93f25e520e540abe1b81b48560c3a" },
- { url = "https://mirrors.aliyun.com/pypi/packages/c5/dc/8952caafa9a10a3c0f40fa86bacf3190ae7f55fa5eef87415b97b29cb97f/safetensors-0.5.2-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ab696dfdc060caffb61dbe4066b86419107a24c804a4e373ba59be699ebd8d5" },
- { url = "https://mirrors.aliyun.com/pypi/packages/60/da/82de1fcf1194e3dbefd4faa92dc98b33c06bed5d67890e0962dd98e18287/safetensors-0.5.2-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:03c937100f38c9ff4c1507abea9928a6a9b02c9c1c9c3609ed4fb2bf413d4975" },
- { url = "https://mirrors.aliyun.com/pypi/packages/5a/9a/d90e273c25f90c3ba1b0196a972003786f04c39e302fbd6649325b1272bb/safetensors-0.5.2-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:a00e737948791b94dad83cf0eafc09a02c4d8c2171a239e8c8572fe04e25960e" },
- { url = "https://mirrors.aliyun.com/pypi/packages/70/3c/acb23e05aa34b4f5edd2e7f393f8e6480fbccd10601ab42cd03a57d4ab5f/safetensors-0.5.2-cp38-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:d3a06fae62418ec8e5c635b61a8086032c9e281f16c63c3af46a6efbab33156f" },
- { url = "https://mirrors.aliyun.com/pypi/packages/71/45/eaa3dba5253a7c6931230dc961641455710ab231f8a89cb3c4c2af70f8c8/safetensors-0.5.2-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:1506e4c2eda1431099cebe9abf6c76853e95d0b7a95addceaa74c6019c65d8cf" },
- { url = "https://mirrors.aliyun.com/pypi/packages/b0/71/2f9851164f821064d43b481ddbea0149c2d676c4f4e077b178e7eeaa6660/safetensors-0.5.2-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:5c5b5d9da594f638a259fca766046f44c97244cc7ab8bef161b3e80d04becc76" },
- { url = "https://mirrors.aliyun.com/pypi/packages/00/f1/5680e2ef61d9c61454fad82c344f0e40b8741a9dbd1e31484f0d31a9b1c3/safetensors-0.5.2-cp38-abi3-win32.whl", hash = "sha256:fe55c039d97090d1f85277d402954dd6ad27f63034fa81985a9cc59655ac3ee2" },
- { url = "https://mirrors.aliyun.com/pypi/packages/86/ca/aa489392ec6fb59223ffce825461e1f811a3affd417121a2088be7a5758b/safetensors-0.5.2-cp38-abi3-win_amd64.whl", hash = "sha256:78abdddd03a406646107f973c7843276e7b64e5e32623529dc17f3d94a20f589" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/18/ae/88f6c49dbd0cc4da0e08610019a3c78a7d390879a919411a410a1876d03a/safetensors-0.5.3-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:bd20eb133db8ed15b40110b7c00c6df51655a2998132193de2f75f72d99c7073" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/b8/3b/11f1b4a2f5d2ab7da34ecc062b0bc301f2be024d110a6466726bec8c055c/safetensors-0.5.3-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:21d01c14ff6c415c485616b8b0bf961c46b3b343ca59110d38d744e577f9cce7" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/5d/9a/add3e6fef267658075c5a41573c26d42d80c935cdc992384dfae435feaef/safetensors-0.5.3-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:11bce6164887cd491ca75c2326a113ba934be596e22b28b1742ce27b1d076467" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/df/5c/bf2cae92222513cc23b3ff85c4a1bb2811a2c3583ac0f8e8d502751de934/safetensors-0.5.3-cp38-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4a243be3590bc3301c821da7a18d87224ef35cbd3e5f5727e4e0728b8172411e" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/58/11/7456afb740bd45782d0f4c8e8e1bb9e572f1bf82899fb6ace58af47b4282/safetensors-0.5.3-cp38-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8bd84b12b1670a6f8e50f01e28156422a2bc07fb16fc4e98bded13039d688a0d" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/57/3d/fe73a9d2ace487e7285f6e157afee2383bd1ddb911b7cb44a55cf812eae3/safetensors-0.5.3-cp38-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:391ac8cab7c829452175f871fcaf414aa1e292b5448bd02620f675a7f3e7abb9" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/a6/f8/dae3421624fcc87a89d42e1898a798bc7ff72c61f38973a65d60df8f124c/safetensors-0.5.3-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cead1fa41fc54b1e61089fa57452e8834f798cb1dc7a09ba3524f1eb08e0317a" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/ce/20/1fbe16f9b815f6c5a672f5b760951e20e17e43f67f231428f871909a37f6/safetensors-0.5.3-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1077f3e94182d72618357b04b5ced540ceb71c8a813d3319f1aba448e68a770d" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/5f/18/8e108846b506487aa4629fe4116b27db65c3dde922de2c8e0cc1133f3f29/safetensors-0.5.3-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:799021e78287bac619c7b3f3606730a22da4cda27759ddf55d37c8db7511c74b" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/82/5a/c116111d8291af6c8c8a8b40628fe833b9db97d8141c2a82359d14d9e078/safetensors-0.5.3-cp38-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:df26da01aaac504334644e1b7642fa000bfec820e7cef83aeac4e355e03195ff" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/7d/ff/41fcc4d3b7de837963622e8610d998710705bbde9a8a17221d85e5d0baad/safetensors-0.5.3-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:32c3ef2d7af8b9f52ff685ed0bc43913cdcde135089ae322ee576de93eae5135" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/40/ad/2b113098e69c985a3d8fbda4b902778eae4a35b7d5188859b4a63d30c161/safetensors-0.5.3-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:37f1521be045e56fc2b54c606d4455573e717b2d887c579ee1dbba5f868ece04" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/0a/0c/95aeb51d4246bd9a3242d3d8349c1112b4ee7611a4b40f0c5c93b05f001d/safetensors-0.5.3-cp38-abi3-win32.whl", hash = "sha256:cfc0ec0846dcf6763b0ed3d1846ff36008c6e7290683b61616c4b040f6a54ace" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/69/e2/b011c38e5394c4c18fb5500778a55ec43ad6106126e74723ffaee246f56e/safetensors-0.5.3-cp38-abi3-win_amd64.whl", hash = "sha256:836cbbc320b47e80acd40e44c8682db0e8ad7123209f69b093def21ec7cafd11" },
]
[[package]]
@@ -6135,7 +6130,7 @@ wheels = [
[[package]]
name = "typer"
-version = "0.15.1"
+version = "0.15.2"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
dependencies = [
{ name = "click" },
@@ -6143,9 +6138,9 @@ dependencies = [
{ name = "shellingham" },
{ name = "typing-extensions" },
]
-sdist = { url = "https://mirrors.aliyun.com/pypi/packages/cb/ce/dca7b219718afd37a0068f4f2530a727c2b74a8b6e8e0c0080a4c0de4fcd/typer-0.15.1.tar.gz", hash = "sha256:a0588c0a7fa68a1978a069818657778f86abe6ff5ea6abf472f940a08bfe4f0a" }
+sdist = { url = "https://mirrors.aliyun.com/pypi/packages/8b/6f/3991f0f1c7fcb2df31aef28e0594d8d54b05393a0e4e34c65e475c2a5d41/typer-0.15.2.tar.gz", hash = "sha256:ab2fab47533a813c49fe1f16b1a370fd5819099c00b119e0633df65f22144ba5" }
wheels = [
- { url = "https://mirrors.aliyun.com/pypi/packages/d0/cc/0a838ba5ca64dc832aa43f727bd586309846b0ffb2ce52422543e6075e8a/typer-0.15.1-py3-none-any.whl", hash = "sha256:7994fb7b8155b64d3402518560648446072864beefd44aa2dc36972a5972e847" },
+ { url = "https://mirrors.aliyun.com/pypi/packages/7f/fc/5b29fea8cee020515ca82cc68e3b8e1e34bb19a3535ad854cac9257b414c/typer-0.15.2-py3-none-any.whl", hash = "sha256:46a499c6107d645a9c13f7ee46c5d5096cae6f5fc57dd11eccbbb9ae3e44ddfc" },
]
[[package]]