mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-07-31 21:42:02 +08:00
Test chat API and refine ppt chunker (#42)
This commit is contained in:
parent
34b2ab3b2f
commit
e32ef75e99
@ -17,7 +17,7 @@ from flask import request
|
|||||||
from flask_login import login_required
|
from flask_login import login_required
|
||||||
from api.db.services.dialog_service import DialogService, ConversationService
|
from api.db.services.dialog_service import DialogService, ConversationService
|
||||||
from api.db import LLMType
|
from api.db import LLMType
|
||||||
from api.db.services.llm_service import LLMService, TenantLLMService
|
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
|
||||||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||||||
from api.utils import get_uuid
|
from api.utils import get_uuid
|
||||||
from api.utils.api_utils import get_json_result
|
from api.utils.api_utils import get_json_result
|
||||||
@ -170,12 +170,9 @@ def chat(dialog, messages, **kwargs):
|
|||||||
if p["key"] not in kwargs:
|
if p["key"] not in kwargs:
|
||||||
prompt_config["system"] = prompt_config["system"].replace("{%s}"%p["key"], " ")
|
prompt_config["system"] = prompt_config["system"].replace("{%s}"%p["key"], " ")
|
||||||
|
|
||||||
model_config = TenantLLMService.get_api_key(dialog.tenant_id, dialog.llm_id)
|
|
||||||
if not model_config: raise LookupError("LLM({}) API key not found".format(dialog.llm_id))
|
|
||||||
|
|
||||||
question = messages[-1]["content"]
|
question = messages[-1]["content"]
|
||||||
embd_mdl = TenantLLMService.model_instance(
|
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING)
|
||||||
dialog.tenant_id, LLMType.EMBEDDING.value)
|
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
|
||||||
kbinfos = retrievaler.retrieval(question, embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n, dialog.similarity_threshold,
|
kbinfos = retrievaler.retrieval(question, embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n, dialog.similarity_threshold,
|
||||||
dialog.vector_similarity_weight, top=1024, aggs=False)
|
dialog.vector_similarity_weight, top=1024, aggs=False)
|
||||||
knowledges = [ck["content_ltks"] for ck in kbinfos["chunks"]]
|
knowledges = [ck["content_ltks"] for ck in kbinfos["chunks"]]
|
||||||
@ -189,8 +186,7 @@ def chat(dialog, messages, **kwargs):
|
|||||||
used_token_count, msg = message_fit_in(msg, int(llm.max_tokens * 0.97))
|
used_token_count, msg = message_fit_in(msg, int(llm.max_tokens * 0.97))
|
||||||
if "max_tokens" in gen_conf:
|
if "max_tokens" in gen_conf:
|
||||||
gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count)
|
gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count)
|
||||||
mdl = ChatModel[model_config.llm_factory](model_config.api_key, dialog.llm_id)
|
answer = chat_mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)
|
||||||
answer = mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)
|
|
||||||
|
|
||||||
answer = retrievaler.insert_citations(answer,
|
answer = retrievaler.insert_citations(answer,
|
||||||
[ck["content_ltks"] for ck in kbinfos["chunks"]],
|
[ck["content_ltks"] for ck in kbinfos["chunks"]],
|
||||||
|
@ -524,6 +524,7 @@ class Dialog(DataBaseModel):
|
|||||||
similarity_threshold = FloatField(default=0.2)
|
similarity_threshold = FloatField(default=0.2)
|
||||||
vector_similarity_weight = FloatField(default=0.3)
|
vector_similarity_weight = FloatField(default=0.3)
|
||||||
top_n = IntegerField(default=6)
|
top_n = IntegerField(default=6)
|
||||||
|
do_refer = CharField(max_length=1, null=False, help_text="it needs to insert reference index into answer or not", default="1")
|
||||||
|
|
||||||
kb_ids = JSONField(null=False, default=[])
|
kb_ids = JSONField(null=False, default=[])
|
||||||
status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted,1: validate)", default="1")
|
status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted,1: validate)", default="1")
|
||||||
|
@ -14,12 +14,12 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
#
|
#
|
||||||
from api.db.services.user_service import TenantService
|
from api.db.services.user_service import TenantService
|
||||||
from rag.llm import EmbeddingModel, CvModel
|
from api.settings import database_logger
|
||||||
|
from rag.llm import EmbeddingModel, CvModel, ChatModel
|
||||||
from api.db import LLMType
|
from api.db import LLMType
|
||||||
from api.db.db_models import DB, UserTenant
|
from api.db.db_models import DB, UserTenant
|
||||||
from api.db.db_models import LLMFactories, LLM, TenantLLM
|
from api.db.db_models import LLMFactories, LLM, TenantLLM
|
||||||
from api.db.services.common_service import CommonService
|
from api.db.services.common_service import CommonService
|
||||||
from api.db import StatusEnum
|
|
||||||
|
|
||||||
|
|
||||||
class LLMFactoriesService(CommonService):
|
class LLMFactoriesService(CommonService):
|
||||||
@ -37,13 +37,19 @@ class TenantLLMService(CommonService):
|
|||||||
@DB.connection_context()
|
@DB.connection_context()
|
||||||
def get_api_key(cls, tenant_id, model_name):
|
def get_api_key(cls, tenant_id, model_name):
|
||||||
objs = cls.query(tenant_id=tenant_id, llm_name=model_name)
|
objs = cls.query(tenant_id=tenant_id, llm_name=model_name)
|
||||||
if not objs: return
|
if not objs:
|
||||||
|
return
|
||||||
return objs[0]
|
return objs[0]
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
@DB.connection_context()
|
@DB.connection_context()
|
||||||
def get_my_llms(cls, tenant_id):
|
def get_my_llms(cls, tenant_id):
|
||||||
fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name]
|
fields = [
|
||||||
|
cls.model.llm_factory,
|
||||||
|
LLMFactories.logo,
|
||||||
|
LLMFactories.tags,
|
||||||
|
cls.model.model_type,
|
||||||
|
cls.model.llm_name]
|
||||||
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(
|
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(
|
||||||
cls.model.tenant_id == tenant_id).dicts()
|
cls.model.tenant_id == tenant_id).dicts()
|
||||||
|
|
||||||
@ -51,23 +57,96 @@ class TenantLLMService(CommonService):
|
|||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
@DB.connection_context()
|
@DB.connection_context()
|
||||||
def model_instance(cls, tenant_id, llm_type):
|
def model_instance(cls, tenant_id, llm_type, llm_name=None):
|
||||||
e,tenant = TenantService.get_by_id(tenant_id)
|
e, tenant = TenantService.get_by_id(tenant_id)
|
||||||
if not e: raise LookupError("Tenant not found")
|
if not e:
|
||||||
|
raise LookupError("Tenant not found")
|
||||||
|
|
||||||
if llm_type == LLMType.EMBEDDING.value: mdlnm = tenant.embd_id
|
if llm_type == LLMType.EMBEDDING.value:
|
||||||
elif llm_type == LLMType.SPEECH2TEXT.value: mdlnm = tenant.asr_id
|
mdlnm = tenant.embd_id
|
||||||
elif llm_type == LLMType.IMAGE2TEXT.value: mdlnm = tenant.img2txt_id
|
elif llm_type == LLMType.SPEECH2TEXT.value:
|
||||||
elif llm_type == LLMType.CHAT.value: mdlnm = tenant.llm_id
|
mdlnm = tenant.asr_id
|
||||||
else: assert False, "LLM type error"
|
elif llm_type == LLMType.IMAGE2TEXT.value:
|
||||||
|
mdlnm = tenant.img2txt_id
|
||||||
|
elif llm_type == LLMType.CHAT.value:
|
||||||
|
mdlnm = tenant.llm_id if not llm_name else llm_name
|
||||||
|
else:
|
||||||
|
assert False, "LLM type error"
|
||||||
|
|
||||||
model_config = cls.get_api_key(tenant_id, mdlnm)
|
model_config = cls.get_api_key(tenant_id, mdlnm)
|
||||||
if not model_config: raise LookupError("Model({}) not found".format(mdlnm))
|
if not model_config:
|
||||||
|
raise LookupError("Model({}) not found".format(mdlnm))
|
||||||
model_config = model_config.to_dict()
|
model_config = model_config.to_dict()
|
||||||
if llm_type == LLMType.EMBEDDING.value:
|
if llm_type == LLMType.EMBEDDING.value:
|
||||||
if model_config["llm_factory"] not in EmbeddingModel: return
|
if model_config["llm_factory"] not in EmbeddingModel:
|
||||||
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"])
|
return
|
||||||
|
return EmbeddingModel[model_config["llm_factory"]](
|
||||||
|
model_config["api_key"], model_config["llm_name"])
|
||||||
|
|
||||||
if llm_type == LLMType.IMAGE2TEXT.value:
|
if llm_type == LLMType.IMAGE2TEXT.value:
|
||||||
if model_config["llm_factory"] not in CvModel: return
|
if model_config["llm_factory"] not in CvModel:
|
||||||
return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"])
|
return
|
||||||
|
return CvModel[model_config["llm_factory"]](
|
||||||
|
model_config["api_key"], model_config["llm_name"])
|
||||||
|
|
||||||
|
if llm_type == LLMType.CHAT.value:
|
||||||
|
if model_config["llm_factory"] not in ChatModel:
|
||||||
|
return
|
||||||
|
return ChatModel[model_config["llm_factory"]](
|
||||||
|
model_config["api_key"], model_config["llm_name"])
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@DB.connection_context()
|
||||||
|
def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
|
||||||
|
e, tenant = TenantService.get_by_id(tenant_id)
|
||||||
|
if not e:
|
||||||
|
raise LookupError("Tenant not found")
|
||||||
|
|
||||||
|
if llm_type == LLMType.EMBEDDING.value:
|
||||||
|
mdlnm = tenant.embd_id
|
||||||
|
elif llm_type == LLMType.SPEECH2TEXT.value:
|
||||||
|
mdlnm = tenant.asr_id
|
||||||
|
elif llm_type == LLMType.IMAGE2TEXT.value:
|
||||||
|
mdlnm = tenant.img2txt_id
|
||||||
|
elif llm_type == LLMType.CHAT.value:
|
||||||
|
mdlnm = tenant.llm_id if not llm_name else llm_name
|
||||||
|
else:
|
||||||
|
assert False, "LLM type error"
|
||||||
|
|
||||||
|
num = cls.model.update(used_tokens=cls.model.used_tokens + used_tokens)\
|
||||||
|
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == mdlnm)\
|
||||||
|
.execute()
|
||||||
|
return num
|
||||||
|
|
||||||
|
|
||||||
|
class LLMBundle(object):
|
||||||
|
def __init__(self, tenant_id, llm_type, llm_name=None):
|
||||||
|
self.tenant_id = tenant_id
|
||||||
|
self.llm_type = llm_type
|
||||||
|
self.llm_name = llm_name
|
||||||
|
self.mdl = TenantLLMService.model_instance(tenant_id, llm_type, llm_name)
|
||||||
|
assert self.mdl, "Can't find mole for {}/{}/{}".format(tenant_id, llm_type, llm_name)
|
||||||
|
|
||||||
|
def encode(self, texts: list, batch_size=32):
|
||||||
|
emd, used_tokens = self.mdl.encode(texts, batch_size)
|
||||||
|
if TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
|
||||||
|
database_logger.error("Can't update token usage for {}/EMBEDDING".format(self.tenant_id))
|
||||||
|
return emd, used_tokens
|
||||||
|
|
||||||
|
def encode_queries(self, query: str):
|
||||||
|
emd, used_tokens = self.mdl.encode_queries(query)
|
||||||
|
if TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
|
||||||
|
database_logger.error("Can't update token usage for {}/EMBEDDING".format(self.tenant_id))
|
||||||
|
return emd, used_tokens
|
||||||
|
|
||||||
|
def describe(self, image, max_tokens=300):
|
||||||
|
txt, used_tokens = self.mdl.describe(image, max_tokens)
|
||||||
|
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
|
||||||
|
database_logger.error("Can't update token usage for {}/IMAGE2TEXT".format(self.tenant_id))
|
||||||
|
return txt
|
||||||
|
|
||||||
|
def chat(self, system, history, gen_conf):
|
||||||
|
txt, used_tokens = self.mdl.chat(system, history, gen_conf)
|
||||||
|
if TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, self.llm_name):
|
||||||
|
database_logger.error("Can't update token usage for {}/CHAT".format(self.tenant_id))
|
||||||
|
return txt
|
||||||
|
@ -143,7 +143,7 @@ def filename_type(filename):
|
|||||||
if re.match(r".*\.pdf$", filename):
|
if re.match(r".*\.pdf$", filename):
|
||||||
return FileType.PDF.value
|
return FileType.PDF.value
|
||||||
|
|
||||||
if re.match(r".*\.(docx|doc|ppt|yml|xml|htm|json|csv|txt|ini|xsl|wps|rtf|hlp|pages|numbers|key|md)$", filename):
|
if re.match(r".*\.(docx|doc|ppt|pptx|yml|xml|htm|json|csv|txt|ini|xsl|wps|rtf|hlp|pages|numbers|key|md)$", filename):
|
||||||
return FileType.DOC.value
|
return FileType.DOC.value
|
||||||
|
|
||||||
if re.match(r".*\.(wav|flac|ape|alac|wavpack|wv|mp3|aac|ogg|vorbis|opus|mp3)$", filename):
|
if re.match(r".*\.(wav|flac|ape|alac|wavpack|wv|mp3|aac|ogg|vorbis|opus|mp3)$", filename):
|
||||||
|
@ -37,7 +37,7 @@ class GptTurbo(Base):
|
|||||||
model=self.model_name,
|
model=self.model_name,
|
||||||
messages=history,
|
messages=history,
|
||||||
**gen_conf)
|
**gen_conf)
|
||||||
return res.choices[0].message.content.strip()
|
return res.choices[0].message.content.strip(), res.usage.completion_tokens
|
||||||
|
|
||||||
|
|
||||||
from dashscope import Generation
|
from dashscope import Generation
|
||||||
@ -56,5 +56,5 @@ class QWenChat(Base):
|
|||||||
result_format='message'
|
result_format='message'
|
||||||
)
|
)
|
||||||
if response.status_code == HTTPStatus.OK:
|
if response.status_code == HTTPStatus.OK:
|
||||||
return response.output.choices[0]['message']['content']
|
return response.output.choices[0]['message']['content'], response.usage.output_tokens
|
||||||
return response.message
|
return response.message, 0
|
||||||
|
@ -72,7 +72,7 @@ class GptV4(Base):
|
|||||||
messages=self.prompt(b64),
|
messages=self.prompt(b64),
|
||||||
max_tokens=max_tokens,
|
max_tokens=max_tokens,
|
||||||
)
|
)
|
||||||
return res.choices[0].message.content.strip()
|
return res.choices[0].message.content.strip(), res.usage.total_tokens
|
||||||
|
|
||||||
|
|
||||||
class QWenCV(Base):
|
class QWenCV(Base):
|
||||||
@ -87,5 +87,5 @@ class QWenCV(Base):
|
|||||||
response = MultiModalConversation.call(model=self.model_name,
|
response = MultiModalConversation.call(model=self.model_name,
|
||||||
messages=self.prompt(self.image2base64(image)))
|
messages=self.prompt(self.image2base64(image)))
|
||||||
if response.status_code == HTTPStatus.OK:
|
if response.status_code == HTTPStatus.OK:
|
||||||
return response.output.choices[0]['message']['content']
|
return response.output.choices[0]['message']['content'], response.usage.output_tokens
|
||||||
return response.message
|
return response.message, 0
|
||||||
|
@ -36,6 +36,9 @@ class Base(ABC):
|
|||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=32):
|
||||||
raise NotImplementedError("Please implement encode method!")
|
raise NotImplementedError("Please implement encode method!")
|
||||||
|
|
||||||
|
def encode_queries(self, text: str):
|
||||||
|
raise NotImplementedError("Please implement encode method!")
|
||||||
|
|
||||||
|
|
||||||
class HuEmbedding(Base):
|
class HuEmbedding(Base):
|
||||||
def __init__(self, key="", model_name=""):
|
def __init__(self, key="", model_name=""):
|
||||||
@ -68,15 +71,18 @@ class HuEmbedding(Base):
|
|||||||
|
|
||||||
class OpenAIEmbed(Base):
|
class OpenAIEmbed(Base):
|
||||||
def __init__(self, key, model_name="text-embedding-ada-002"):
|
def __init__(self, key, model_name="text-embedding-ada-002"):
|
||||||
self.client = OpenAI(key)
|
self.client = OpenAI(api_key=key)
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32):
|
def encode(self, texts: list, batch_size=32):
|
||||||
token_count = 0
|
|
||||||
for t in texts: token_count += num_tokens_from_string(t)
|
|
||||||
res = self.client.embeddings.create(input=texts,
|
res = self.client.embeddings.create(input=texts,
|
||||||
model=self.model_name)
|
model=self.model_name)
|
||||||
return [d["embedding"] for d in res["data"]], token_count
|
return np.array([d.embedding for d in res.data]), res.usage.total_tokens
|
||||||
|
|
||||||
|
def encode_queries(self, text):
|
||||||
|
res = self.client.embeddings.create(input=[text],
|
||||||
|
model=self.model_name)
|
||||||
|
return np.array(res.data[0].embedding), res.usage.total_tokens
|
||||||
|
|
||||||
|
|
||||||
class QWenEmbed(Base):
|
class QWenEmbed(Base):
|
||||||
@ -84,16 +90,28 @@ class QWenEmbed(Base):
|
|||||||
dashscope.api_key = key
|
dashscope.api_key = key
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
|
||||||
def encode(self, texts: list, batch_size=32, text_type="document"):
|
def encode(self, texts: list, batch_size=10):
|
||||||
import dashscope
|
import dashscope
|
||||||
res = []
|
res = []
|
||||||
token_count = 0
|
token_count = 0
|
||||||
for txt in texts:
|
texts = [txt[:2048] for txt in texts]
|
||||||
|
for i in range(0, len(texts), batch_size):
|
||||||
resp = dashscope.TextEmbedding.call(
|
resp = dashscope.TextEmbedding.call(
|
||||||
model=self.model_name,
|
model=self.model_name,
|
||||||
input=txt[:2048],
|
input=texts[i:i+batch_size],
|
||||||
text_type=text_type
|
text_type="document"
|
||||||
)
|
)
|
||||||
res.append(resp["output"]["embeddings"][0]["embedding"])
|
embds = [[]] * len(resp["output"]["embeddings"])
|
||||||
token_count += resp["usage"]["total_tokens"]
|
for e in resp["output"]["embeddings"]:
|
||||||
return res, token_count
|
embds[e["text_index"]] = e["embedding"]
|
||||||
|
res.extend(embds)
|
||||||
|
token_count += resp["usage"]["input_tokens"]
|
||||||
|
return np.array(res), token_count
|
||||||
|
|
||||||
|
def encode_queries(self, text):
|
||||||
|
resp = dashscope.TextEmbedding.call(
|
||||||
|
model=self.model_name,
|
||||||
|
input=text[:2048],
|
||||||
|
text_type="query"
|
||||||
|
)
|
||||||
|
return np.array(resp["output"]["embeddings"][0]["embedding"]), resp["usage"]["input_tokens"]
|
@ -11,6 +11,11 @@ from io import BytesIO
|
|||||||
|
|
||||||
class HuChunker:
|
class HuChunker:
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Fields:
|
||||||
|
text_chunks: List = None
|
||||||
|
table_chunks: List = None
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.MAX_LVL = 12
|
self.MAX_LVL = 12
|
||||||
self.proj_patt = [
|
self.proj_patt = [
|
||||||
@ -228,11 +233,6 @@ class HuChunker:
|
|||||||
|
|
||||||
class PdfChunker(HuChunker):
|
class PdfChunker(HuChunker):
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class Fields:
|
|
||||||
text_chunks: List = None
|
|
||||||
table_chunks: List = None
|
|
||||||
|
|
||||||
def __init__(self, pdf_parser):
|
def __init__(self, pdf_parser):
|
||||||
self.pdf = pdf_parser
|
self.pdf = pdf_parser
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -293,11 +293,6 @@ class PdfChunker(HuChunker):
|
|||||||
|
|
||||||
class DocxChunker(HuChunker):
|
class DocxChunker(HuChunker):
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class Fields:
|
|
||||||
text_chunks: List = None
|
|
||||||
table_chunks: List = None
|
|
||||||
|
|
||||||
def __init__(self, doc_parser):
|
def __init__(self, doc_parser):
|
||||||
self.doc = doc_parser
|
self.doc = doc_parser
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -344,11 +339,6 @@ class DocxChunker(HuChunker):
|
|||||||
|
|
||||||
class ExcelChunker(HuChunker):
|
class ExcelChunker(HuChunker):
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class Fields:
|
|
||||||
text_chunks: List = None
|
|
||||||
table_chunks: List = None
|
|
||||||
|
|
||||||
def __init__(self, excel_parser):
|
def __init__(self, excel_parser):
|
||||||
self.excel = excel_parser
|
self.excel = excel_parser
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -370,18 +360,51 @@ class PptChunker(HuChunker):
|
|||||||
def __init__(self):
|
def __init__(self):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
|
def __extract(self, shape):
|
||||||
|
if shape.shape_type == 19:
|
||||||
|
tb = shape.table
|
||||||
|
rows = []
|
||||||
|
for i in range(1, len(tb.rows)):
|
||||||
|
rows.append("; ".join([tb.cell(0, j).text + ": " + tb.cell(i, j).text for j in range(len(tb.columns)) if tb.cell(i, j)]))
|
||||||
|
return "\n".join(rows)
|
||||||
|
|
||||||
|
if shape.has_text_frame:
|
||||||
|
return shape.text_frame.text
|
||||||
|
|
||||||
|
if shape.shape_type == 6:
|
||||||
|
texts = []
|
||||||
|
for p in shape.shapes:
|
||||||
|
t = self.__extract(p)
|
||||||
|
if t: texts.append(t)
|
||||||
|
return "\n".join(texts)
|
||||||
|
|
||||||
def __call__(self, fnm):
|
def __call__(self, fnm):
|
||||||
from pptx import Presentation
|
from pptx import Presentation
|
||||||
ppt = Presentation(fnm) if isinstance(
|
ppt = Presentation(fnm) if isinstance(
|
||||||
fnm, str) else Presentation(
|
fnm, str) else Presentation(
|
||||||
BytesIO(fnm))
|
BytesIO(fnm))
|
||||||
flds = self.Fields()
|
txts = []
|
||||||
flds.text_chunks = []
|
|
||||||
for slide in ppt.slides:
|
for slide in ppt.slides:
|
||||||
|
texts = []
|
||||||
for shape in slide.shapes:
|
for shape in slide.shapes:
|
||||||
if hasattr(shape, "text"):
|
txt = self.__extract(shape)
|
||||||
flds.text_chunks.append((shape.text, None))
|
if txt: texts.append(txt)
|
||||||
|
txts.append("\n".join(texts))
|
||||||
|
|
||||||
|
import aspose.slides as slides
|
||||||
|
import aspose.pydrawing as drawing
|
||||||
|
imgs = []
|
||||||
|
with slides.Presentation(BytesIO(fnm)) as presentation:
|
||||||
|
for slide in presentation.slides:
|
||||||
|
buffered = BytesIO()
|
||||||
|
slide.get_thumbnail(0.5, 0.5).save(buffered, drawing.imaging.ImageFormat.jpeg)
|
||||||
|
imgs.append(buffered.getvalue())
|
||||||
|
assert len(imgs) == len(txts), "Slides text and image do not match: {} vs. {}".format(len(imgs), len(txts))
|
||||||
|
|
||||||
|
flds = self.Fields()
|
||||||
|
flds.text_chunks = [(txts[i], imgs[i]) for i in range(len(txts))]
|
||||||
flds.table_chunks = []
|
flds.table_chunks = []
|
||||||
|
|
||||||
return flds
|
return flds
|
||||||
|
|
||||||
|
|
||||||
|
@ -58,7 +58,8 @@ class Dealer:
|
|||||||
if req["available_int"] == 0:
|
if req["available_int"] == 0:
|
||||||
bqry.filter.append(Q("range", available_int={"lt": 1}))
|
bqry.filter.append(Q("range", available_int={"lt": 1}))
|
||||||
else:
|
else:
|
||||||
bqry.filter.append(Q("bool", must_not=Q("range", available_int={"lt": 1})))
|
bqry.filter.append(
|
||||||
|
Q("bool", must_not=Q("range", available_int={"lt": 1})))
|
||||||
bqry.boost = 0.05
|
bqry.boost = 0.05
|
||||||
|
|
||||||
s = Search()
|
s = Search()
|
||||||
@ -87,9 +88,12 @@ class Dealer:
|
|||||||
q_vec = []
|
q_vec = []
|
||||||
if req.get("vector"):
|
if req.get("vector"):
|
||||||
assert emb_mdl, "No embedding model selected"
|
assert emb_mdl, "No embedding model selected"
|
||||||
s["knn"] = self._vector(qst, emb_mdl, req.get("similarity", 0.4), ps)
|
s["knn"] = self._vector(
|
||||||
|
qst, emb_mdl, req.get(
|
||||||
|
"similarity", 0.4), ps)
|
||||||
s["knn"]["filter"] = bqry.to_dict()
|
s["knn"]["filter"] = bqry.to_dict()
|
||||||
if "highlight" in s: del s["highlight"]
|
if "highlight" in s:
|
||||||
|
del s["highlight"]
|
||||||
q_vec = s["knn"]["query_vector"]
|
q_vec = s["knn"]["query_vector"]
|
||||||
es_logger.info("【Q】: {}".format(json.dumps(s)))
|
es_logger.info("【Q】: {}".format(json.dumps(s)))
|
||||||
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
|
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
|
||||||
@ -175,7 +179,8 @@ class Dealer:
|
|||||||
def trans2floats(txt):
|
def trans2floats(txt):
|
||||||
return [float(t) for t in txt.split("\t")]
|
return [float(t) for t in txt.split("\t")]
|
||||||
|
|
||||||
def insert_citations(self, answer, chunks, chunk_v, embd_mdl, tkweight=0.3, vtweight=0.7):
|
def insert_citations(self, answer, chunks, chunk_v,
|
||||||
|
embd_mdl, tkweight=0.3, vtweight=0.7):
|
||||||
pieces = re.split(r"([;。?!!\n]|[a-z][.?;!][ \n])", answer)
|
pieces = re.split(r"([;。?!!\n]|[a-z][.?;!][ \n])", answer)
|
||||||
for i in range(1, len(pieces)):
|
for i in range(1, len(pieces)):
|
||||||
if re.match(r"[a-z][.?;!][ \n]", pieces[i]):
|
if re.match(r"[a-z][.?;!][ \n]", pieces[i]):
|
||||||
@ -184,47 +189,57 @@ class Dealer:
|
|||||||
idx = []
|
idx = []
|
||||||
pieces_ = []
|
pieces_ = []
|
||||||
for i, t in enumerate(pieces):
|
for i, t in enumerate(pieces):
|
||||||
if len(t) < 5: continue
|
if len(t) < 5:
|
||||||
|
continue
|
||||||
idx.append(i)
|
idx.append(i)
|
||||||
pieces_.append(t)
|
pieces_.append(t)
|
||||||
es_logger.info("{} => {}".format(answer, pieces_))
|
es_logger.info("{} => {}".format(answer, pieces_))
|
||||||
if not pieces_: return answer
|
if not pieces_:
|
||||||
|
return answer
|
||||||
|
|
||||||
ans_v, c = embd_mdl.encode(pieces_)
|
ans_v, _ = embd_mdl.encode(pieces_)
|
||||||
assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
|
assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
|
||||||
len(ans_v[0]), len(chunk_v[0]))
|
len(ans_v[0]), len(chunk_v[0]))
|
||||||
|
|
||||||
chunks_tks = [huqie.qie(ck).split(" ") for ck in chunks]
|
chunks_tks = [huqie.qie(ck).split(" ") for ck in chunks]
|
||||||
cites = {}
|
cites = {}
|
||||||
for i,a in enumerate(pieces_):
|
for i, a in enumerate(pieces_):
|
||||||
sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
|
sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
|
||||||
chunk_v,
|
chunk_v,
|
||||||
huqie.qie(pieces_[i]).split(" "),
|
huqie.qie(
|
||||||
|
pieces_[i]).split(" "),
|
||||||
chunks_tks,
|
chunks_tks,
|
||||||
tkweight, vtweight)
|
tkweight, vtweight)
|
||||||
mx = np.max(sim) * 0.99
|
mx = np.max(sim) * 0.99
|
||||||
if mx < 0.55: continue
|
if mx < 0.55:
|
||||||
cites[idx[i]] = list(set([str(i) for i in range(len(chunk_v)) if sim[i] > mx]))[:4]
|
continue
|
||||||
|
cites[idx[i]] = list(
|
||||||
|
set([str(i) for i in range(len(chunk_v)) if sim[i] > mx]))[:4]
|
||||||
|
|
||||||
res = ""
|
res = ""
|
||||||
for i,p in enumerate(pieces):
|
for i, p in enumerate(pieces):
|
||||||
res += p
|
res += p
|
||||||
if i not in idx:continue
|
if i not in idx:
|
||||||
if i not in cites:continue
|
continue
|
||||||
res += "##%s$$"%"$".join(cites[i])
|
if i not in cites:
|
||||||
|
continue
|
||||||
|
res += "##%s$$" % "$".join(cites[i])
|
||||||
|
|
||||||
return res
|
return res
|
||||||
|
|
||||||
def rerank(self, sres, query, tkweight=0.3, vtweight=0.7, cfield="content_ltks"):
|
def rerank(self, sres, query, tkweight=0.3,
|
||||||
|
vtweight=0.7, cfield="content_ltks"):
|
||||||
ins_embd = [
|
ins_embd = [
|
||||||
Dealer.trans2floats(
|
Dealer.trans2floats(
|
||||||
sres.field[i]["q_%d_vec" % len(sres.query_vector)]) for i in sres.ids]
|
sres.field[i].get("q_%d_vec" % len(sres.query_vector), "\t".join(["0"] * len(sres.query_vector)))) for i in sres.ids]
|
||||||
if not ins_embd:
|
if not ins_embd:
|
||||||
return [], [], []
|
return [], [], []
|
||||||
ins_tw = [huqie.qie(sres.field[i][cfield]).split(" ") for i in sres.ids]
|
ins_tw = [huqie.qie(sres.field[i][cfield]).split(" ")
|
||||||
|
for i in sres.ids]
|
||||||
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
|
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
|
||||||
ins_embd,
|
ins_embd,
|
||||||
huqie.qie(query).split(" "),
|
huqie.qie(
|
||||||
|
query).split(" "),
|
||||||
ins_tw, tkweight, vtweight)
|
ins_tw, tkweight, vtweight)
|
||||||
return sim, tksim, vtsim
|
return sim, tksim, vtsim
|
||||||
|
|
||||||
@ -237,7 +252,8 @@ class Dealer:
|
|||||||
def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
|
def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
|
||||||
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True):
|
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True):
|
||||||
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
|
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
|
||||||
if not question: return ranks
|
if not question:
|
||||||
|
return ranks
|
||||||
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": top,
|
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": top,
|
||||||
"question": question, "vector": True,
|
"question": question, "vector": True,
|
||||||
"similarity": similarity_threshold}
|
"similarity": similarity_threshold}
|
||||||
|
@ -49,7 +49,7 @@ from rag.nlp.huchunk import (
|
|||||||
)
|
)
|
||||||
from api.db import LLMType
|
from api.db import LLMType
|
||||||
from api.db.services.document_service import DocumentService
|
from api.db.services.document_service import DocumentService
|
||||||
from api.db.services.llm_service import TenantLLMService
|
from api.db.services.llm_service import TenantLLMService, LLMBundle
|
||||||
from api.settings import database_logger
|
from api.settings import database_logger
|
||||||
from api.utils import get_format_time
|
from api.utils import get_format_time
|
||||||
from api.utils.file_utils import get_project_base_directory
|
from api.utils.file_utils import get_project_base_directory
|
||||||
@ -62,7 +62,7 @@ EXC = ExcelChunker(ExcelParser())
|
|||||||
PPT = PptChunker()
|
PPT = PptChunker()
|
||||||
|
|
||||||
|
|
||||||
def chuck_doc(name, binary, cvmdl=None):
|
def chuck_doc(name, binary, tenant_id, cvmdl=None):
|
||||||
suff = os.path.split(name)[-1].lower().split(".")[-1]
|
suff = os.path.split(name)[-1].lower().split(".")[-1]
|
||||||
if suff.find("pdf") >= 0:
|
if suff.find("pdf") >= 0:
|
||||||
return PDF(binary)
|
return PDF(binary)
|
||||||
@ -127,7 +127,7 @@ def build(row, cvmdl):
|
|||||||
100., "Finished preparing! Start to slice file!", True)
|
100., "Finished preparing! Start to slice file!", True)
|
||||||
try:
|
try:
|
||||||
cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"]))
|
cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"]))
|
||||||
obj = chuck_doc(row["name"], MINIO.get(row["kb_id"], row["location"]), cvmdl)
|
obj = chuck_doc(row["name"], MINIO.get(row["kb_id"], row["location"]), row["tenant_id"], cvmdl)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
if re.search("(No such file|not found)", str(e)):
|
if re.search("(No such file|not found)", str(e)):
|
||||||
set_progress(
|
set_progress(
|
||||||
@ -236,12 +236,14 @@ def main(comm, mod):
|
|||||||
|
|
||||||
tmf = open(tm_fnm, "a+")
|
tmf = open(tm_fnm, "a+")
|
||||||
for _, r in rows.iterrows():
|
for _, r in rows.iterrows():
|
||||||
embd_mdl = TenantLLMService.model_instance(r["tenant_id"], LLMType.EMBEDDING)
|
try:
|
||||||
if not embd_mdl:
|
embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING)
|
||||||
set_progress(r["id"], -1, "Can't find embedding model!")
|
cv_mdl = LLMBundle(r["tenant_id"], LLMType.IMAGE2TEXT)
|
||||||
cron_logger.error("Tenant({}) can't find embedding model!".format(r["tenant_id"]))
|
#TODO: sequence2text model
|
||||||
|
except Exception as e:
|
||||||
|
set_progress(r["id"], -1, str(e))
|
||||||
continue
|
continue
|
||||||
cv_mdl = TenantLLMService.model_instance(r["tenant_id"], LLMType.IMAGE2TEXT)
|
|
||||||
st_tm = timer()
|
st_tm = timer()
|
||||||
cks = build(r, cv_mdl)
|
cks = build(r, cv_mdl)
|
||||||
if not cks:
|
if not cks:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user