mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-12 07:19:04 +08:00
### What problem does this PR solve? Resolve #2905 due to the in-consistent of token size, I make it safe to limit 500 in code, since there is no config param to control my llama.cpp run set -ub to 1024: ${llama_path}/bin/llama-server --host 0.0.0.0 --port 9901 -ub 1024 -ngl 99 -m $gguf_file --reranking "$@" ### Type of change - [x] New Feature (non-breaking change which adds functionality) Here is my test Ragflow use llama.cpp ``` lot update_slots: id 0 | task 458 | prompt done, n_past = 416, n_tokens = 416 slot release: id 0 | task 458 | stop processing: n_past = 416, truncated = 0 slot launch_slot_: id 0 | task 459 | processing task slot update_slots: id 0 | task 459 | tokenizing prompt, len = 2 slot update_slots: id 0 | task 459 | prompt tokenized, n_ctx_slot = 8192, n_keep = 0, n_prompt_tokens = 111 slot update_slots: id 0 | task 459 | kv cache rm [0, end) slot update_slots: id 0 | task 459 | prompt processing progress, n_past = 111, n_tokens = 111, progress = 1.000000 slot update_slots: id 0 | task 459 | prompt done, n_past = 111, n_tokens = 111 slot release: id 0 | task 459 | stop processing: n_past = 111, truncated = 0 srv update_slots: all slots are idle request: POST /rerank 172.23.0.4 200 ```
This commit is contained in:
parent
5aec1e3e17
commit
e5f7733b31
@ -242,10 +242,46 @@ class LmStudioRerank(Base):
|
||||
|
||||
class OpenAI_APIRerank(Base):
|
||||
def __init__(self, key, model_name, base_url):
|
||||
pass
|
||||
if base_url.find("/rerank") == -1:
|
||||
self.base_url = urljoin(base_url, "/rerank")
|
||||
else:
|
||||
self.base_url = base_url
|
||||
self.headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {key}"
|
||||
}
|
||||
self.model_name = model_name
|
||||
|
||||
def similarity(self, query: str, texts: list):
|
||||
raise NotImplementedError("The api has not been implement")
|
||||
# noway to config Ragflow , use fix setting
|
||||
texts = [truncate(t, 500) for t in texts]
|
||||
data = {
|
||||
"model": self.model_name,
|
||||
"query": query,
|
||||
"documents": texts,
|
||||
"top_n": len(texts),
|
||||
}
|
||||
token_count = 0
|
||||
for t in texts:
|
||||
token_count += num_tokens_from_string(t)
|
||||
res = requests.post(self.base_url, headers=self.headers, json=data).json()
|
||||
rank = np.zeros(len(texts), dtype=float)
|
||||
if 'results' not in res:
|
||||
raise ValueError("response not contains results\n" + str(res))
|
||||
for d in res["results"]:
|
||||
rank[d["index"]] = d["relevance_score"]
|
||||
|
||||
# Normalize the rank values to the range 0 to 1
|
||||
min_rank = np.min(rank)
|
||||
max_rank = np.max(rank)
|
||||
|
||||
# Avoid division by zero if all ranks are identical
|
||||
if max_rank - min_rank != 0:
|
||||
rank = (rank - min_rank) / (max_rank - min_rank)
|
||||
else:
|
||||
rank = np.zeros_like(rank)
|
||||
|
||||
return rank, token_count
|
||||
|
||||
|
||||
class CoHereRerank(Base):
|
||||
|
Loading…
x
Reference in New Issue
Block a user