refactor some llm api using openai api format (#1692)

### What problem does this PR solve?

refactor some llm api using openai api format

### Type of change

- [x] Refactoring

---------

Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
This commit is contained in:
黄腾 2024-07-25 10:23:35 +08:00 committed by GitHub
parent d5f87a5498
commit e67bfca552
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 58 additions and 240 deletions

View File

@ -24,6 +24,7 @@ from volcengine.maas.v2 import MaasService
from rag.nlp import is_english
from rag.utils import num_tokens_from_string
from groq import Groq
import os
import json
import requests
@ -60,9 +61,16 @@ class Base(ABC):
stream=True,
**gen_conf)
for resp in response:
if not resp.choices or not resp.choices[0].delta.content:continue
if not resp.choices:continue
ans += resp.choices[0].delta.content
total_tokens += 1
total_tokens = (
(
total_tokens
+ num_tokens_from_string(resp.choices[0].delta.content)
)
if not hasattr(resp, "usage")
else resp.usage["total_tokens"]
)
if resp.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
@ -85,8 +93,13 @@ class MoonshotChat(Base):
if not base_url: base_url="https://api.moonshot.cn/v1"
super().__init__(key, model_name, base_url)
class XinferenceChat(Base):
def __init__(self, key=None, model_name="", base_url=""):
if not base_url:
raise ValueError("Local llm url cannot be None")
if base_url.split("/")[-1] != "v1":
self.base_url = os.path.join(base_url, "v1")
key = "xxx"
super().__init__(key, model_name, base_url)
@ -349,79 +362,13 @@ class OllamaChat(Base):
class LocalAIChat(Base):
def __init__(self, key, model_name, base_url):
if base_url[-1] == "/":
base_url = base_url[:-1]
self.base_url = base_url + "/v1/chat/completions"
if not base_url:
raise ValueError("Local llm url cannot be None")
if base_url.split("/")[-1] != "v1":
self.base_url = os.path.join(base_url, "v1")
self.client = OpenAI(api_key="empty", base_url=self.base_url)
self.model_name = model_name.split("___")[0]
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
headers = {
"Content-Type": "application/json",
}
payload = json.dumps(
{"model": self.model_name, "messages": history, **gen_conf}
)
try:
response = requests.request(
"POST", url=self.base_url, headers=headers, data=payload
)
response = response.json()
ans = response["choices"][0]["message"]["content"].strip()
if response["choices"][0]["finish_reason"] == "length":
ans += (
"...\nFor the content length reason, it stopped, continue?"
if is_english([ans])
else "······\n由于长度的原因,回答被截断了,要继续吗?"
)
return ans, response["usage"]["total_tokens"]
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
ans = ""
total_tokens = 0
try:
headers = {
"Content-Type": "application/json",
}
payload = json.dumps(
{
"model": self.model_name,
"messages": history,
"stream": True,
**gen_conf,
}
)
response = requests.request(
"POST",
url=self.base_url,
headers=headers,
data=payload,
)
for resp in response.content.decode("utf-8").split("\n\n"):
if "choices" not in resp:
continue
resp = json.loads(resp[6:])
if "delta" in resp["choices"][0]:
text = resp["choices"][0]["delta"]["content"]
else:
continue
ans += text
total_tokens += 1
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class LocalLLM(Base):
class RPCProxy:
@ -892,9 +839,10 @@ class GroqChat:
## openrouter
class OpenRouterChat(Base):
def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"):
self.base_url = "https://openrouter.ai/api/v1"
self.client = OpenAI(base_url=self.base_url, api_key=key)
self.model_name = model_name
if not base_url:
base_url = "https://openrouter.ai/api/v1"
super().__init__(key, model_name, base_url)
class StepFunChat(Base):
def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1"):
@ -904,87 +852,17 @@ class StepFunChat(Base):
class NvidiaChat(Base):
def __init__(
self,
key,
model_name,
base_url="https://integrate.api.nvidia.com/v1/chat/completions",
):
def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1"):
if not base_url:
base_url = "https://integrate.api.nvidia.com/v1/chat/completions"
self.base_url = base_url
self.model_name = model_name
self.api_key = key
self.headers = {
"accept": "application/json",
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
payload = {"model": self.model_name, "messages": history, **gen_conf}
try:
response = requests.post(
url=self.base_url, headers=self.headers, json=payload
)
response = response.json()
ans = response["choices"][0]["message"]["content"].strip()
return ans, response["usage"]["total_tokens"]
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
ans = ""
total_tokens = 0
payload = {
"model": self.model_name,
"messages": history,
"stream": True,
**gen_conf,
}
try:
response = requests.post(
url=self.base_url,
headers=self.headers,
json=payload,
)
for resp in response.text.split("\n\n"):
if "choices" not in resp:
continue
resp = json.loads(resp[6:])
if "content" in resp["choices"][0]["delta"]:
text = resp["choices"][0]["delta"]["content"]
else:
continue
ans += text
if "usage" in resp:
total_tokens = resp["usage"]["total_tokens"]
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
base_url = "https://integrate.api.nvidia.com/v1"
super().__init__(key, model_name, base_url)
class LmStudioChat(Base):
def __init__(self, key, model_name, base_url):
from os.path import join
if not base_url:
raise ValueError("Local llm url cannot be None")
if base_url.split("/")[-1] != "v1":
self.base_url = join(base_url, "v1")
self.base_url = os.path.join(base_url, "v1")
self.client = OpenAI(api_key="lm-studio", base_url=self.base_url)
self.model_name = model_name

View File

@ -378,7 +378,7 @@ class OllamaCV(Base):
def chat(self, system, history, gen_conf, image=""):
if system:
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
try:
for his in history:
if his["role"] == "user":
@ -433,27 +433,16 @@ class OllamaCV(Base):
yield 0
class LocalAICV(Base):
class LocalAICV(GptV4):
def __init__(self, key, model_name, base_url, lang="Chinese"):
if not base_url:
raise ValueError("Local cv model url cannot be None")
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
self.client = OpenAI(api_key="empty", base_url=base_url)
self.model_name = model_name.split("___")[0]
self.lang = lang
def describe(self, image, max_tokens=300):
b64 = self.image2base64(image)
prompt = self.prompt(b64)
for i in range(len(prompt)):
for c in prompt[i]["content"]:
if "text" in c:
c["type"] = "text"
res = self.client.chat.completions.create(
model=self.model_name,
messages=prompt,
max_tokens=max_tokens,
)
return res.choices[0].message.content.strip(), res.usage.total_tokens
class XinferenceCV(Base):
def __init__(self, key, model_name="", lang="Chinese", base_url=""):
@ -549,60 +538,19 @@ class GeminiCV(Base):
yield response._chunks[-1].usage_metadata.total_token_count
class OpenRouterCV(Base):
class OpenRouterCV(GptV4):
def __init__(
self,
key,
model_name,
lang="Chinese",
base_url="https://openrouter.ai/api/v1/chat/completions",
base_url="https://openrouter.ai/api/v1",
):
if not base_url:
base_url = "https://openrouter.ai/api/v1"
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name
self.lang = lang
self.base_url = "https://openrouter.ai/api/v1/chat/completions"
self.key = key
def describe(self, image, max_tokens=300):
b64 = self.image2base64(image)
response = requests.post(
url=self.base_url,
headers={
"Authorization": f"Bearer {self.key}",
},
data=json.dumps(
{
"model": self.model_name,
"messages": self.prompt(b64),
"max_tokens": max_tokens,
}
),
)
response = response.json()
return (
response["choices"][0]["message"]["content"].strip(),
response["usage"]["total_tokens"],
)
def prompt(self, b64):
return [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{b64}"},
},
{
"type": "text",
"text": (
"请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
if self.lang.lower() == "chinese"
else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
),
},
],
}
]
class LocalCV(Base):
@ -675,12 +623,12 @@ class NvidiaCV(Base):
]
class LmStudioCV(LocalAICV):
class LmStudioCV(GptV4):
def __init__(self, key, model_name, base_url, lang="Chinese"):
if not base_url:
raise ValueError("Local llm url cannot be None")
if base_url.split('/')[-1] != 'v1':
self.base_url = os.path.join(base_url,'v1')
self.client = OpenAI(api_key="lm-studio", base_url=self.base_url)
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
self.client = OpenAI(api_key="lm-studio", base_url=base_url)
self.model_name = model_name
self.lang = lang

View File

@ -113,21 +113,24 @@ class OpenAIEmbed(Base):
class LocalAIEmbed(Base):
def __init__(self, key, model_name, base_url):
self.base_url = base_url + "/embeddings"
self.headers = {
"Content-Type": "application/json",
}
if not base_url:
raise ValueError("Local embedding model url cannot be None")
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
self.client = OpenAI(api_key="empty", base_url=base_url)
self.model_name = model_name.split("___")[0]
def encode(self, texts: list, batch_size=None):
data = {"model": self.model_name, "input": texts, "encoding_type": "float"}
res = requests.post(self.base_url, headers=self.headers, json=data).json()
return np.array([d["embedding"] for d in res["data"]]), 1024
def encode(self, texts: list, batch_size=32):
res = self.client.embeddings.create(input=texts, model=self.model_name)
return (
np.array([d.embedding for d in res.data]),
1024,
) # local embedding for LmStudio donot count tokens
def encode_queries(self, text):
embds, cnt = self.encode([text])
return np.array(embds[0]), cnt
res = self.client.embeddings.create(text, model=self.model_name)
return np.array(res.data[0].embedding), 1024
class AzureEmbed(OpenAIEmbed):
def __init__(self, key, model_name, **kwargs):
@ -502,7 +505,7 @@ class NvidiaEmbed(Base):
return np.array(embds[0]), cnt
class LmStudioEmbed(Base):
class LmStudioEmbed(LocalAIEmbed):
def __init__(self, key, model_name, base_url):
if not base_url:
raise ValueError("Local llm url cannot be None")
@ -510,14 +513,3 @@ class LmStudioEmbed(Base):
self.base_url = os.path.join(base_url, "v1")
self.client = OpenAI(api_key="lm-studio", base_url=self.base_url)
self.model_name = model_name
def encode(self, texts: list, batch_size=32):
res = self.client.embeddings.create(input=texts, model=self.model_name)
return (
np.array([d.embedding for d in res.data]),
1024,
) # local embedding for LmStudio donot count tokens
def encode_queries(self, text):
res = self.client.embeddings.create(text, model=self.model_name)
return np.array(res.data[0].embedding), 1024