mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-14 14:45:53 +08:00
refactor some llm api using openai api format (#1692)
### What problem does this PR solve? refactor some llm api using openai api format ### Type of change - [x] Refactoring --------- Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
This commit is contained in:
parent
d5f87a5498
commit
e67bfca552
@ -24,6 +24,7 @@ from volcengine.maas.v2 import MaasService
|
||||
from rag.nlp import is_english
|
||||
from rag.utils import num_tokens_from_string
|
||||
from groq import Groq
|
||||
import os
|
||||
import json
|
||||
import requests
|
||||
|
||||
@ -60,9 +61,16 @@ class Base(ABC):
|
||||
stream=True,
|
||||
**gen_conf)
|
||||
for resp in response:
|
||||
if not resp.choices or not resp.choices[0].delta.content:continue
|
||||
if not resp.choices:continue
|
||||
ans += resp.choices[0].delta.content
|
||||
total_tokens += 1
|
||||
total_tokens = (
|
||||
(
|
||||
total_tokens
|
||||
+ num_tokens_from_string(resp.choices[0].delta.content)
|
||||
)
|
||||
if not hasattr(resp, "usage")
|
||||
else resp.usage["total_tokens"]
|
||||
)
|
||||
if resp.choices[0].finish_reason == "length":
|
||||
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
||||
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
||||
@ -85,8 +93,13 @@ class MoonshotChat(Base):
|
||||
if not base_url: base_url="https://api.moonshot.cn/v1"
|
||||
super().__init__(key, model_name, base_url)
|
||||
|
||||
|
||||
class XinferenceChat(Base):
|
||||
def __init__(self, key=None, model_name="", base_url=""):
|
||||
if not base_url:
|
||||
raise ValueError("Local llm url cannot be None")
|
||||
if base_url.split("/")[-1] != "v1":
|
||||
self.base_url = os.path.join(base_url, "v1")
|
||||
key = "xxx"
|
||||
super().__init__(key, model_name, base_url)
|
||||
|
||||
@ -349,79 +362,13 @@ class OllamaChat(Base):
|
||||
|
||||
class LocalAIChat(Base):
|
||||
def __init__(self, key, model_name, base_url):
|
||||
if base_url[-1] == "/":
|
||||
base_url = base_url[:-1]
|
||||
self.base_url = base_url + "/v1/chat/completions"
|
||||
if not base_url:
|
||||
raise ValueError("Local llm url cannot be None")
|
||||
if base_url.split("/")[-1] != "v1":
|
||||
self.base_url = os.path.join(base_url, "v1")
|
||||
self.client = OpenAI(api_key="empty", base_url=self.base_url)
|
||||
self.model_name = model_name.split("___")[0]
|
||||
|
||||
def chat(self, system, history, gen_conf):
|
||||
if system:
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
for k in list(gen_conf.keys()):
|
||||
if k not in ["temperature", "top_p", "max_tokens"]:
|
||||
del gen_conf[k]
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
payload = json.dumps(
|
||||
{"model": self.model_name, "messages": history, **gen_conf}
|
||||
)
|
||||
try:
|
||||
response = requests.request(
|
||||
"POST", url=self.base_url, headers=headers, data=payload
|
||||
)
|
||||
response = response.json()
|
||||
ans = response["choices"][0]["message"]["content"].strip()
|
||||
if response["choices"][0]["finish_reason"] == "length":
|
||||
ans += (
|
||||
"...\nFor the content length reason, it stopped, continue?"
|
||||
if is_english([ans])
|
||||
else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
||||
)
|
||||
return ans, response["usage"]["total_tokens"]
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf):
|
||||
if system:
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
ans = ""
|
||||
total_tokens = 0
|
||||
try:
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
payload = json.dumps(
|
||||
{
|
||||
"model": self.model_name,
|
||||
"messages": history,
|
||||
"stream": True,
|
||||
**gen_conf,
|
||||
}
|
||||
)
|
||||
response = requests.request(
|
||||
"POST",
|
||||
url=self.base_url,
|
||||
headers=headers,
|
||||
data=payload,
|
||||
)
|
||||
for resp in response.content.decode("utf-8").split("\n\n"):
|
||||
if "choices" not in resp:
|
||||
continue
|
||||
resp = json.loads(resp[6:])
|
||||
if "delta" in resp["choices"][0]:
|
||||
text = resp["choices"][0]["delta"]["content"]
|
||||
else:
|
||||
continue
|
||||
ans += text
|
||||
total_tokens += 1
|
||||
yield ans
|
||||
|
||||
except Exception as e:
|
||||
yield ans + "\n**ERROR**: " + str(e)
|
||||
|
||||
yield total_tokens
|
||||
|
||||
|
||||
class LocalLLM(Base):
|
||||
class RPCProxy:
|
||||
@ -892,9 +839,10 @@ class GroqChat:
|
||||
## openrouter
|
||||
class OpenRouterChat(Base):
|
||||
def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"):
|
||||
self.base_url = "https://openrouter.ai/api/v1"
|
||||
self.client = OpenAI(base_url=self.base_url, api_key=key)
|
||||
self.model_name = model_name
|
||||
if not base_url:
|
||||
base_url = "https://openrouter.ai/api/v1"
|
||||
super().__init__(key, model_name, base_url)
|
||||
|
||||
|
||||
class StepFunChat(Base):
|
||||
def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1"):
|
||||
@ -904,87 +852,17 @@ class StepFunChat(Base):
|
||||
|
||||
|
||||
class NvidiaChat(Base):
|
||||
def __init__(
|
||||
self,
|
||||
key,
|
||||
model_name,
|
||||
base_url="https://integrate.api.nvidia.com/v1/chat/completions",
|
||||
):
|
||||
def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1"):
|
||||
if not base_url:
|
||||
base_url = "https://integrate.api.nvidia.com/v1/chat/completions"
|
||||
self.base_url = base_url
|
||||
self.model_name = model_name
|
||||
self.api_key = key
|
||||
self.headers = {
|
||||
"accept": "application/json",
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
def chat(self, system, history, gen_conf):
|
||||
if system:
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
for k in list(gen_conf.keys()):
|
||||
if k not in ["temperature", "top_p", "max_tokens"]:
|
||||
del gen_conf[k]
|
||||
payload = {"model": self.model_name, "messages": history, **gen_conf}
|
||||
try:
|
||||
response = requests.post(
|
||||
url=self.base_url, headers=self.headers, json=payload
|
||||
)
|
||||
response = response.json()
|
||||
ans = response["choices"][0]["message"]["content"].strip()
|
||||
return ans, response["usage"]["total_tokens"]
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf):
|
||||
if system:
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
for k in list(gen_conf.keys()):
|
||||
if k not in ["temperature", "top_p", "max_tokens"]:
|
||||
del gen_conf[k]
|
||||
ans = ""
|
||||
total_tokens = 0
|
||||
payload = {
|
||||
"model": self.model_name,
|
||||
"messages": history,
|
||||
"stream": True,
|
||||
**gen_conf,
|
||||
}
|
||||
|
||||
try:
|
||||
response = requests.post(
|
||||
url=self.base_url,
|
||||
headers=self.headers,
|
||||
json=payload,
|
||||
)
|
||||
for resp in response.text.split("\n\n"):
|
||||
if "choices" not in resp:
|
||||
continue
|
||||
resp = json.loads(resp[6:])
|
||||
if "content" in resp["choices"][0]["delta"]:
|
||||
text = resp["choices"][0]["delta"]["content"]
|
||||
else:
|
||||
continue
|
||||
ans += text
|
||||
if "usage" in resp:
|
||||
total_tokens = resp["usage"]["total_tokens"]
|
||||
yield ans
|
||||
|
||||
except Exception as e:
|
||||
yield ans + "\n**ERROR**: " + str(e)
|
||||
|
||||
yield total_tokens
|
||||
base_url = "https://integrate.api.nvidia.com/v1"
|
||||
super().__init__(key, model_name, base_url)
|
||||
|
||||
|
||||
class LmStudioChat(Base):
|
||||
def __init__(self, key, model_name, base_url):
|
||||
from os.path import join
|
||||
|
||||
if not base_url:
|
||||
raise ValueError("Local llm url cannot be None")
|
||||
if base_url.split("/")[-1] != "v1":
|
||||
self.base_url = join(base_url, "v1")
|
||||
self.base_url = os.path.join(base_url, "v1")
|
||||
self.client = OpenAI(api_key="lm-studio", base_url=self.base_url)
|
||||
self.model_name = model_name
|
||||
|
@ -378,7 +378,7 @@ class OllamaCV(Base):
|
||||
def chat(self, system, history, gen_conf, image=""):
|
||||
if system:
|
||||
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
|
||||
|
||||
|
||||
try:
|
||||
for his in history:
|
||||
if his["role"] == "user":
|
||||
@ -433,27 +433,16 @@ class OllamaCV(Base):
|
||||
yield 0
|
||||
|
||||
|
||||
class LocalAICV(Base):
|
||||
class LocalAICV(GptV4):
|
||||
def __init__(self, key, model_name, base_url, lang="Chinese"):
|
||||
if not base_url:
|
||||
raise ValueError("Local cv model url cannot be None")
|
||||
if base_url.split("/")[-1] != "v1":
|
||||
base_url = os.path.join(base_url, "v1")
|
||||
self.client = OpenAI(api_key="empty", base_url=base_url)
|
||||
self.model_name = model_name.split("___")[0]
|
||||
self.lang = lang
|
||||
|
||||
def describe(self, image, max_tokens=300):
|
||||
b64 = self.image2base64(image)
|
||||
prompt = self.prompt(b64)
|
||||
for i in range(len(prompt)):
|
||||
for c in prompt[i]["content"]:
|
||||
if "text" in c:
|
||||
c["type"] = "text"
|
||||
|
||||
res = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=prompt,
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
return res.choices[0].message.content.strip(), res.usage.total_tokens
|
||||
|
||||
|
||||
class XinferenceCV(Base):
|
||||
def __init__(self, key, model_name="", lang="Chinese", base_url=""):
|
||||
@ -549,60 +538,19 @@ class GeminiCV(Base):
|
||||
yield response._chunks[-1].usage_metadata.total_token_count
|
||||
|
||||
|
||||
class OpenRouterCV(Base):
|
||||
class OpenRouterCV(GptV4):
|
||||
def __init__(
|
||||
self,
|
||||
key,
|
||||
model_name,
|
||||
lang="Chinese",
|
||||
base_url="https://openrouter.ai/api/v1/chat/completions",
|
||||
base_url="https://openrouter.ai/api/v1",
|
||||
):
|
||||
if not base_url:
|
||||
base_url = "https://openrouter.ai/api/v1"
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
self.base_url = "https://openrouter.ai/api/v1/chat/completions"
|
||||
self.key = key
|
||||
|
||||
def describe(self, image, max_tokens=300):
|
||||
b64 = self.image2base64(image)
|
||||
response = requests.post(
|
||||
url=self.base_url,
|
||||
headers={
|
||||
"Authorization": f"Bearer {self.key}",
|
||||
},
|
||||
data=json.dumps(
|
||||
{
|
||||
"model": self.model_name,
|
||||
"messages": self.prompt(b64),
|
||||
"max_tokens": max_tokens,
|
||||
}
|
||||
),
|
||||
)
|
||||
response = response.json()
|
||||
return (
|
||||
response["choices"][0]["message"]["content"].strip(),
|
||||
response["usage"]["total_tokens"],
|
||||
)
|
||||
|
||||
def prompt(self, b64):
|
||||
return [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {"url": f"data:image/jpeg;base64,{b64}"},
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": (
|
||||
"请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
|
||||
if self.lang.lower() == "chinese"
|
||||
else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
|
||||
),
|
||||
},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
class LocalCV(Base):
|
||||
@ -675,12 +623,12 @@ class NvidiaCV(Base):
|
||||
]
|
||||
|
||||
|
||||
class LmStudioCV(LocalAICV):
|
||||
class LmStudioCV(GptV4):
|
||||
def __init__(self, key, model_name, base_url, lang="Chinese"):
|
||||
if not base_url:
|
||||
raise ValueError("Local llm url cannot be None")
|
||||
if base_url.split('/')[-1] != 'v1':
|
||||
self.base_url = os.path.join(base_url,'v1')
|
||||
self.client = OpenAI(api_key="lm-studio", base_url=self.base_url)
|
||||
if base_url.split("/")[-1] != "v1":
|
||||
base_url = os.path.join(base_url, "v1")
|
||||
self.client = OpenAI(api_key="lm-studio", base_url=base_url)
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
|
@ -113,21 +113,24 @@ class OpenAIEmbed(Base):
|
||||
|
||||
class LocalAIEmbed(Base):
|
||||
def __init__(self, key, model_name, base_url):
|
||||
self.base_url = base_url + "/embeddings"
|
||||
self.headers = {
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
if not base_url:
|
||||
raise ValueError("Local embedding model url cannot be None")
|
||||
if base_url.split("/")[-1] != "v1":
|
||||
base_url = os.path.join(base_url, "v1")
|
||||
self.client = OpenAI(api_key="empty", base_url=base_url)
|
||||
self.model_name = model_name.split("___")[0]
|
||||
|
||||
def encode(self, texts: list, batch_size=None):
|
||||
data = {"model": self.model_name, "input": texts, "encoding_type": "float"}
|
||||
res = requests.post(self.base_url, headers=self.headers, json=data).json()
|
||||
|
||||
return np.array([d["embedding"] for d in res["data"]]), 1024
|
||||
def encode(self, texts: list, batch_size=32):
|
||||
res = self.client.embeddings.create(input=texts, model=self.model_name)
|
||||
return (
|
||||
np.array([d.embedding for d in res.data]),
|
||||
1024,
|
||||
) # local embedding for LmStudio donot count tokens
|
||||
|
||||
def encode_queries(self, text):
|
||||
embds, cnt = self.encode([text])
|
||||
return np.array(embds[0]), cnt
|
||||
res = self.client.embeddings.create(text, model=self.model_name)
|
||||
return np.array(res.data[0].embedding), 1024
|
||||
|
||||
|
||||
class AzureEmbed(OpenAIEmbed):
|
||||
def __init__(self, key, model_name, **kwargs):
|
||||
@ -502,7 +505,7 @@ class NvidiaEmbed(Base):
|
||||
return np.array(embds[0]), cnt
|
||||
|
||||
|
||||
class LmStudioEmbed(Base):
|
||||
class LmStudioEmbed(LocalAIEmbed):
|
||||
def __init__(self, key, model_name, base_url):
|
||||
if not base_url:
|
||||
raise ValueError("Local llm url cannot be None")
|
||||
@ -510,14 +513,3 @@ class LmStudioEmbed(Base):
|
||||
self.base_url = os.path.join(base_url, "v1")
|
||||
self.client = OpenAI(api_key="lm-studio", base_url=self.base_url)
|
||||
self.model_name = model_name
|
||||
|
||||
def encode(self, texts: list, batch_size=32):
|
||||
res = self.client.embeddings.create(input=texts, model=self.model_name)
|
||||
return (
|
||||
np.array([d.embedding for d in res.data]),
|
||||
1024,
|
||||
) # local embedding for LmStudio donot count tokens
|
||||
|
||||
def encode_queries(self, text):
|
||||
res = self.client.embeddings.create(text, model=self.model_name)
|
||||
return np.array(res.data[0].embedding), 1024
|
||||
|
Loading…
x
Reference in New Issue
Block a user