mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-23 06:30:00 +08:00
Add Q&A and Book, fix task running bugs (#50)
This commit is contained in:
parent
6224edcd1b
commit
e6acaf6738
@ -18,10 +18,12 @@ import datetime
|
||||
from flask import request
|
||||
from flask_login import login_required, current_user
|
||||
from elasticsearch_dsl import Q
|
||||
|
||||
from rag.app.qa import rmPrefix, beAdoc
|
||||
from rag.nlp import search, huqie, retrievaler
|
||||
from rag.utils import ELASTICSEARCH, rmSpace
|
||||
from api.db import LLMType
|
||||
from api.db.services.kb_service import KnowledgebaseService
|
||||
from api.db import LLMType, ParserType
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import TenantLLMService
|
||||
from api.db.services.user_service import UserTenantService
|
||||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||||
@ -89,10 +91,8 @@ def get():
|
||||
res["chunk_id"] = id
|
||||
k = []
|
||||
for n in res.keys():
|
||||
if re.search(r"(_vec$|_sm_)", n):
|
||||
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
|
||||
k.append(n)
|
||||
if re.search(r"(_tks|_ltks)", n):
|
||||
res[n] = rmSpace(res[n])
|
||||
for n in k:
|
||||
del res[n]
|
||||
|
||||
@ -106,12 +106,12 @@ def get():
|
||||
|
||||
@manager.route('/set', methods=['POST'])
|
||||
@login_required
|
||||
@validate_request("doc_id", "chunk_id", "content_ltks",
|
||||
@validate_request("doc_id", "chunk_id", "content_with_weight",
|
||||
"important_kwd")
|
||||
def set():
|
||||
req = request.json
|
||||
d = {"id": req["chunk_id"]}
|
||||
d["content_ltks"] = huqie.qie(req["content_ltks"])
|
||||
d["content_ltks"] = huqie.qie(req["content_with_weight"])
|
||||
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
|
||||
d["important_kwd"] = req["important_kwd"]
|
||||
d["important_tks"] = huqie.qie(" ".join(req["important_kwd"]))
|
||||
@ -127,8 +127,15 @@ def set():
|
||||
e, doc = DocumentService.get_by_id(req["doc_id"])
|
||||
if not e:
|
||||
return get_data_error_result(retmsg="Document not found!")
|
||||
|
||||
if doc.parser_id == ParserType.QA:
|
||||
arr = [t for t in re.split(r"[\n\t]", req["content_with_weight"]) if len(t)>1]
|
||||
if len(arr) != 2: return get_data_error_result(retmsg="Q&A must be separated by TAB/ENTER key.")
|
||||
q, a = rmPrefix(arr[0]), rmPrefix[arr[1]]
|
||||
d = beAdoc(d, arr[0], arr[1], not any([huqie.is_chinese(t) for t in q+a]))
|
||||
|
||||
v, c = embd_mdl.encode([doc.name, req["content_ltks"]])
|
||||
v = 0.1 * v[0] + 0.9 * v[1]
|
||||
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
|
||||
d["q_%d_vec" % len(v)] = v.tolist()
|
||||
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
|
||||
return get_json_result(data=True)
|
||||
|
@ -18,7 +18,7 @@ from flask import request
|
||||
from flask_login import login_required, current_user
|
||||
from api.db.services.dialog_service import DialogService
|
||||
from api.db import StatusEnum
|
||||
from api.db.services.kb_service import KnowledgebaseService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.user_service import TenantService
|
||||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||||
from api.utils import get_uuid
|
||||
|
@ -27,10 +27,10 @@ from api.db.services.task_service import TaskService
|
||||
from rag.nlp import search
|
||||
from rag.utils import ELASTICSEARCH
|
||||
from api.db.services import duplicate_name
|
||||
from api.db.services.kb_service import KnowledgebaseService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||||
from api.utils import get_uuid
|
||||
from api.db import FileType
|
||||
from api.db import FileType, TaskStatus
|
||||
from api.db.services.document_service import DocumentService
|
||||
from api.settings import RetCode
|
||||
from api.utils.api_utils import get_json_result
|
||||
@ -210,13 +210,12 @@ def rm():
|
||||
@manager.route('/run', methods=['POST'])
|
||||
@login_required
|
||||
@validate_request("doc_ids", "run")
|
||||
def rm():
|
||||
def run():
|
||||
req = request.json
|
||||
try:
|
||||
for id in req["doc_ids"]:
|
||||
DocumentService.update_by_id(id, {"run": str(req["run"])})
|
||||
if req["run"] == "2":
|
||||
TaskService.filter_delete([Task.doc_id == id])
|
||||
DocumentService.update_by_id(id, {"run": str(req["run"]), "progress": 0})
|
||||
if str(req["run"]) == TaskStatus.CANCEL.value:
|
||||
tenant_id = DocumentService.get_tenant_id(id)
|
||||
if not tenant_id:
|
||||
return get_data_error_result(retmsg="Tenant not found!")
|
||||
@ -284,9 +283,10 @@ def change_parser():
|
||||
if doc.parser_id.lower() == req["parser_id"].lower():
|
||||
return get_json_result(data=True)
|
||||
|
||||
e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress":0, "progress_msg": "", "run": 1})
|
||||
e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress":0, "progress_msg": ""})
|
||||
if not e:
|
||||
return get_data_error_result(retmsg="Document not found!")
|
||||
if doc.token_num>0:
|
||||
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num*-1, doc.chunk_num*-1, doc.process_duation*-1)
|
||||
if not e:
|
||||
return get_data_error_result(retmsg="Document not found!")
|
||||
|
@ -21,7 +21,7 @@ from api.db.services.user_service import TenantService, UserTenantService
|
||||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||||
from api.utils import get_uuid, get_format_time
|
||||
from api.db import StatusEnum, UserTenantRole
|
||||
from api.db.services.kb_service import KnowledgebaseService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.db_models import Knowledgebase
|
||||
from api.settings import stat_logger, RetCode
|
||||
from api.utils.api_utils import get_json_result
|
||||
|
@ -22,7 +22,7 @@ from api.db.services.user_service import TenantService, UserTenantService
|
||||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||||
from api.utils import get_uuid, get_format_time
|
||||
from api.db import StatusEnum, UserTenantRole
|
||||
from api.db.services.kb_service import KnowledgebaseService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.db_models import Knowledgebase, TenantLLM
|
||||
from api.settings import stat_logger, RetCode
|
||||
from api.utils.api_utils import get_json_result
|
||||
|
@ -61,12 +61,19 @@ class ChatStyle(StrEnum):
|
||||
CUSTOM = 'Custom'
|
||||
|
||||
|
||||
class TaskStatus(StrEnum):
|
||||
RUNNING = "1"
|
||||
CANCEL = "2"
|
||||
DONE = "3"
|
||||
FAIL = "4"
|
||||
|
||||
|
||||
class ParserType(StrEnum):
|
||||
GENERAL = "general"
|
||||
PRESENTATION = "presentation"
|
||||
LAWS = "laws"
|
||||
MANUAL = "manual"
|
||||
PAPER = "paper"
|
||||
RESUME = ""
|
||||
BOOK = ""
|
||||
QA = ""
|
||||
RESUME = "resume"
|
||||
BOOK = "book"
|
||||
QA = "qa"
|
||||
|
@ -33,8 +33,8 @@ def bulk_insert_into_db(model, data_source, replace_on_conflict=False):
|
||||
DB.create_tables([model])
|
||||
|
||||
|
||||
for data in data_source:
|
||||
current_time = current_timestamp()
|
||||
for i,data in enumerate(data_source):
|
||||
current_time = current_timestamp() + i
|
||||
current_date = timestamp_to_date(current_time)
|
||||
if 'create_time' not in data:
|
||||
data['create_time'] = current_time
|
||||
|
@ -15,11 +15,11 @@
|
||||
#
|
||||
from peewee import Expression
|
||||
|
||||
from api.db import TenantPermission, FileType
|
||||
from api.db import TenantPermission, FileType, TaskStatus
|
||||
from api.db.db_models import DB, Knowledgebase, Tenant
|
||||
from api.db.db_models import Document
|
||||
from api.db.services.common_service import CommonService
|
||||
from api.db.services.kb_service import KnowledgebaseService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db import StatusEnum
|
||||
|
||||
|
||||
@ -71,6 +71,7 @@ class DocumentService(CommonService):
|
||||
~(cls.model.type == FileType.VIRTUAL.value),
|
||||
cls.model.progress == 0,
|
||||
cls.model.update_time >= tm,
|
||||
cls.model.run == TaskStatus.RUNNING.value,
|
||||
(Expression(cls.model.create_time, "%%", comm) == mod))\
|
||||
.order_by(cls.model.update_time.asc())\
|
||||
.paginate(1, items_per_page)
|
||||
|
@ -13,13 +13,52 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
from api.db.db_models import Knowledgebase, Document
|
||||
from api.db import StatusEnum, TenantPermission
|
||||
from api.db.db_models import Knowledgebase, DB, Tenant
|
||||
from api.db.services.common_service import CommonService
|
||||
|
||||
|
||||
class KnowledgebaseService(CommonService):
|
||||
model = Knowledgebase
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_by_tenant_ids(cls, joined_tenant_ids, user_id,
|
||||
page_number, items_per_page, orderby, desc):
|
||||
kbs = cls.model.select().where(
|
||||
((cls.model.tenant_id.in_(joined_tenant_ids) & (cls.model.permission ==
|
||||
TenantPermission.TEAM.value)) | (cls.model.tenant_id == user_id))
|
||||
& (cls.model.status == StatusEnum.VALID.value)
|
||||
)
|
||||
if desc:
|
||||
kbs = kbs.order_by(cls.model.getter_by(orderby).desc())
|
||||
else:
|
||||
kbs = kbs.order_by(cls.model.getter_by(orderby).asc())
|
||||
|
||||
class DocumentService(CommonService):
|
||||
model = Document
|
||||
kbs = kbs.paginate(page_number, items_per_page)
|
||||
|
||||
return list(kbs.dicts())
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_detail(cls, kb_id):
|
||||
fields = [
|
||||
cls.model.id,
|
||||
Tenant.embd_id,
|
||||
cls.model.avatar,
|
||||
cls.model.name,
|
||||
cls.model.description,
|
||||
cls.model.permission,
|
||||
cls.model.doc_num,
|
||||
cls.model.token_num,
|
||||
cls.model.chunk_num,
|
||||
cls.model.parser_id]
|
||||
kbs = cls.model.select(*fields).join(Tenant, on=((Tenant.id == cls.model.tenant_id)&(Tenant.status== StatusEnum.VALID.value))).where(
|
||||
(cls.model.id == kb_id),
|
||||
(cls.model.status == StatusEnum.VALID.value)
|
||||
)
|
||||
if not kbs:
|
||||
return
|
||||
d = kbs[0].to_dict()
|
||||
d["embd_id"] = kbs[0].tenant.embd_id
|
||||
return d
|
||||
|
@ -15,9 +15,10 @@
|
||||
#
|
||||
from peewee import Expression
|
||||
from api.db.db_models import DB
|
||||
from api.db import StatusEnum, FileType
|
||||
from api.db import StatusEnum, FileType, TaskStatus
|
||||
from api.db.db_models import Task, Document, Knowledgebase, Tenant
|
||||
from api.db.services.common_service import CommonService
|
||||
from api.db.services.document_service import DocumentService
|
||||
|
||||
|
||||
class TaskService(CommonService):
|
||||
@ -46,8 +47,9 @@ class TaskService(CommonService):
|
||||
@DB.connection_context()
|
||||
def do_cancel(cls, id):
|
||||
try:
|
||||
cls.model.get_by_id(id)
|
||||
return False
|
||||
task = cls.model.get_by_id(id)
|
||||
_, doc = DocumentService.get_by_id(task.doc_id)
|
||||
return doc.run == TaskStatus.CANCEL.value
|
||||
except Exception as e:
|
||||
pass
|
||||
return True
|
||||
|
@ -143,7 +143,7 @@ def filename_type(filename):
|
||||
if re.match(r".*\.pdf$", filename):
|
||||
return FileType.PDF.value
|
||||
|
||||
if re.match(r".*\.(docx|doc|ppt|pptx|yml|xml|htm|json|csv|txt|ini|xsl|wps|rtf|hlp|pages|numbers|key|md)$", filename):
|
||||
if re.match(r".*\.(docx|doc|ppt|pptx|yml|xml|htm|json|csv|txt|ini|xls|xlsx|wps|rtf|hlp|pages|numbers|key|md)$", filename):
|
||||
return FileType.DOC.value
|
||||
|
||||
if re.match(r".*\.(wav|flac|ape|alac|wavpack|wv|mp3|aac|ogg|vorbis|opus|mp3)$", filename):
|
||||
|
@ -4,14 +4,8 @@ from nltk import word_tokenize
|
||||
|
||||
from rag.nlp import stemmer, huqie
|
||||
|
||||
|
||||
def callback__(progress, msg, func):
|
||||
if not func :return
|
||||
func(progress, msg)
|
||||
|
||||
|
||||
BULLET_PATTERN = [[
|
||||
r"第[零一二三四五六七八九十百]+编",
|
||||
r"第[零一二三四五六七八九十百]+(编|部分)",
|
||||
r"第[零一二三四五六七八九十百]+章",
|
||||
r"第[零一二三四五六七八九十百]+节",
|
||||
r"第[零一二三四五六七八九十百]+条",
|
||||
@ -22,6 +16,8 @@ BULLET_PATTERN = [[
|
||||
r"[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}",
|
||||
r"[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}",
|
||||
], [
|
||||
r"第[零一二三四五六七八九十百]+章",
|
||||
r"第[零一二三四五六七八九十百]+节",
|
||||
r"[零一二三四五六七八九十百]+[ 、]",
|
||||
r"[\((][零一二三四五六七八九十百]+[\))]",
|
||||
r"[\((][0-9]{,2}[\))]",
|
||||
@ -54,7 +50,7 @@ def bullets_category(sections):
|
||||
def is_english(texts):
|
||||
eng = 0
|
||||
for t in texts:
|
||||
if re.match(r"[a-zA-Z]", t.strip()):
|
||||
if re.match(r"[a-zA-Z]{2,}", t.strip()):
|
||||
eng += 1
|
||||
if eng / len(texts) > 0.8:
|
||||
return True
|
||||
@ -70,3 +66,26 @@ def tokenize(d, t, eng):
|
||||
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
|
||||
|
||||
|
||||
def remove_contents_table(sections, eng=False):
|
||||
i = 0
|
||||
while i < len(sections):
|
||||
def get(i):
|
||||
nonlocal sections
|
||||
return (sections[i] if type(sections[i]) == type("") else sections[i][0]).strip()
|
||||
if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$", re.sub(r"( | |\u3000)+", "", get(i).split("@@")[0], re.IGNORECASE)):
|
||||
i += 1
|
||||
continue
|
||||
sections.pop(i)
|
||||
if i >= len(sections): break
|
||||
prefix = get(i)[:3] if not eng else " ".join(get(i).split(" ")[:2])
|
||||
while not prefix:
|
||||
sections.pop(i)
|
||||
if i >= len(sections): break
|
||||
prefix = get(i)[:3] if not eng else " ".join(get(i).split(" ")[:2])
|
||||
sections.pop(i)
|
||||
if i >= len(sections) or not prefix: break
|
||||
for j in range(i, min(i+128, len(sections))):
|
||||
if not re.match(prefix, get(j)):
|
||||
continue
|
||||
for _ in range(i, j):sections.pop(i)
|
||||
break
|
156
rag/app/book.py
Normal file
156
rag/app/book.py
Normal file
@ -0,0 +1,156 @@
|
||||
import copy
|
||||
import random
|
||||
import re
|
||||
from io import BytesIO
|
||||
from docx import Document
|
||||
import numpy as np
|
||||
from rag.app import bullets_category, BULLET_PATTERN, is_english, tokenize, remove_contents_table
|
||||
from rag.nlp import huqie
|
||||
from rag.parser.docx_parser import HuDocxParser
|
||||
from rag.parser.pdf_parser import HuParser
|
||||
|
||||
|
||||
class Pdf(HuParser):
|
||||
def __call__(self, filename, binary=None, from_page=0,
|
||||
to_page=100000, zoomin=3, callback=None):
|
||||
self.__images__(
|
||||
filename if not binary else binary,
|
||||
zoomin,
|
||||
from_page,
|
||||
to_page)
|
||||
callback(0.1, "OCR finished")
|
||||
|
||||
from timeit import default_timer as timer
|
||||
start = timer()
|
||||
self._layouts_paddle(zoomin)
|
||||
callback(0.47, "Layout analysis finished")
|
||||
print("paddle layouts:", timer() - start)
|
||||
self._table_transformer_job(zoomin)
|
||||
callback(0.68, "Table analysis finished")
|
||||
self._text_merge()
|
||||
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
|
||||
self._concat_downward(concat_between_pages=False)
|
||||
self._filter_forpages()
|
||||
self._merge_with_same_bullet()
|
||||
callback(0.75, "Text merging finished.")
|
||||
tbls = self._extract_table_figure(True, zoomin, False)
|
||||
|
||||
callback(0.8, "Text extraction finished")
|
||||
|
||||
return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno","")) for b in self.boxes]
|
||||
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
|
||||
doc = {
|
||||
"docnm_kwd": filename,
|
||||
"title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
||||
}
|
||||
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
||||
pdf_parser = None
|
||||
sections,tbls = [], []
|
||||
if re.search(r"\.docx?$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
doc_parser = HuDocxParser()
|
||||
# TODO: table of contents need to be removed
|
||||
sections, tbls = doc_parser(binary if binary else filename)
|
||||
remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200)))
|
||||
callback(0.8, "Finish parsing.")
|
||||
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||||
pdf_parser = Pdf()
|
||||
sections,tbls = pdf_parser(filename if not binary else binary,
|
||||
from_page=from_page, to_page=to_page, callback=callback)
|
||||
elif re.search(r"\.txt$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
txt = ""
|
||||
if binary:txt = binary.decode("utf-8")
|
||||
else:
|
||||
with open(filename, "r") as f:
|
||||
while True:
|
||||
l = f.readline()
|
||||
if not l:break
|
||||
txt += l
|
||||
sections = txt.split("\n")
|
||||
sections = [(l,"") for l in sections if l]
|
||||
remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200)))
|
||||
callback(0.8, "Finish parsing.")
|
||||
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
|
||||
|
||||
bull = bullets_category([b["text"] for b in random.choices([t for t,_ in sections], k=100)])
|
||||
projs = [len(BULLET_PATTERN[bull]) + 1] * len(sections)
|
||||
levels = [[]] * len(BULLET_PATTERN[bull]) + 2
|
||||
for i, (txt, layout) in enumerate(sections):
|
||||
for j, p in enumerate(BULLET_PATTERN[bull]):
|
||||
if re.match(p, txt.strip()):
|
||||
projs[i] = j
|
||||
levels[j].append(i)
|
||||
break
|
||||
else:
|
||||
if re.search(r"(title|head)", layout):
|
||||
projs[i] = BULLET_PATTERN[bull]
|
||||
levels[BULLET_PATTERN[bull]].append(i)
|
||||
else:
|
||||
levels[BULLET_PATTERN[bull] + 1].append(i)
|
||||
sections = [t for t,_ in sections]
|
||||
|
||||
def binary_search(arr, target):
|
||||
if target > arr[-1]: return len(arr) - 1
|
||||
if target > arr[0]: return -1
|
||||
s, e = 0, len(arr)
|
||||
while e - s > 1:
|
||||
i = (e + s) // 2
|
||||
if target > arr[i]:
|
||||
s = i
|
||||
continue
|
||||
elif target < arr[i]:
|
||||
e = i
|
||||
continue
|
||||
else:
|
||||
assert False
|
||||
return s
|
||||
|
||||
cks = []
|
||||
readed = [False] * len(sections)
|
||||
levels = levels[::-1]
|
||||
for i, arr in enumerate(levels):
|
||||
for j in arr:
|
||||
if readed[j]: continue
|
||||
readed[j] = True
|
||||
cks.append([j])
|
||||
if i + 1 == len(levels) - 1: continue
|
||||
for ii in range(i + 1, len(levels)):
|
||||
jj = binary_search(levels[ii], j)
|
||||
if jj < 0: break
|
||||
if jj > cks[-1][-1]: cks[-1].pop(-1)
|
||||
cks[-1].append(levels[ii][jj])
|
||||
|
||||
# is it English
|
||||
eng = is_english(random.choices(sections, k=218))
|
||||
|
||||
res = []
|
||||
# add tables
|
||||
for img, rows in tbls:
|
||||
bs = 10
|
||||
de = ";" if eng else ";"
|
||||
for i in range(0, len(rows), bs):
|
||||
d = copy.deepcopy(doc)
|
||||
r = de.join(rows[i:i + bs])
|
||||
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
|
||||
tokenize(d, r, eng)
|
||||
d["image"] = img
|
||||
res.append(d)
|
||||
# wrap up to es documents
|
||||
for ck in cks:
|
||||
print("\n-".join(ck[::-1]))
|
||||
ck = "\n".join(ck[::-1])
|
||||
d = copy.deepcopy(doc)
|
||||
if pdf_parser:
|
||||
d["image"] = pdf_parser.crop(ck)
|
||||
ck = pdf_parser.remove_tag(ck)
|
||||
tokenize(d, ck, eng)
|
||||
res.append(d)
|
||||
return res
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
chunk(sys.argv[1])
|
@ -3,7 +3,7 @@ import re
|
||||
from io import BytesIO
|
||||
from docx import Document
|
||||
import numpy as np
|
||||
from rag.app import callback__, bullets_category, BULLET_PATTERN, is_english, tokenize
|
||||
from rag.app import bullets_category, BULLET_PATTERN, is_english, tokenize
|
||||
from rag.nlp import huqie
|
||||
from rag.parser.docx_parser import HuDocxParser
|
||||
from rag.parser.pdf_parser import HuParser
|
||||
@ -32,12 +32,12 @@ class Pdf(HuParser):
|
||||
zoomin,
|
||||
from_page,
|
||||
to_page)
|
||||
callback__(0.1, "OCR finished", callback)
|
||||
callback(0.1, "OCR finished")
|
||||
|
||||
from timeit import default_timer as timer
|
||||
start = timer()
|
||||
self._layouts_paddle(zoomin)
|
||||
callback__(0.77, "Layout analysis finished", callback)
|
||||
callback(0.77, "Layout analysis finished")
|
||||
print("paddle layouts:", timer()-start)
|
||||
bxs = self.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3)
|
||||
# is it English
|
||||
@ -75,7 +75,7 @@ class Pdf(HuParser):
|
||||
b["x1"] = max(b["x1"], b_["x1"])
|
||||
bxs.pop(i + 1)
|
||||
|
||||
callback__(0.8, "Text extraction finished", callback)
|
||||
callback(0.8, "Text extraction finished")
|
||||
|
||||
return [b["text"] + self._line_tag(b, zoomin) for b in bxs]
|
||||
|
||||
@ -89,17 +89,17 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
|
||||
pdf_parser = None
|
||||
sections = []
|
||||
if re.search(r"\.docx?$", filename, re.IGNORECASE):
|
||||
callback__(0.1, "Start to parse.", callback)
|
||||
callback(0.1, "Start to parse.")
|
||||
for txt in Docx()(filename, binary):
|
||||
sections.append(txt)
|
||||
callback__(0.8, "Finish parsing.", callback)
|
||||
callback(0.8, "Finish parsing.")
|
||||
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||||
pdf_parser = Pdf()
|
||||
for txt in pdf_parser(filename if not binary else binary,
|
||||
from_page=from_page, to_page=to_page, callback=callback):
|
||||
sections.append(txt)
|
||||
elif re.search(r"\.txt$", filename, re.IGNORECASE):
|
||||
callback__(0.1, "Start to parse.", callback)
|
||||
callback(0.1, "Start to parse.")
|
||||
txt = ""
|
||||
if binary:txt = binary.decode("utf-8")
|
||||
else:
|
||||
@ -110,7 +110,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
|
||||
txt += l
|
||||
sections = txt.split("\n")
|
||||
sections = [l for l in sections if l]
|
||||
callback__(0.8, "Finish parsing.", callback)
|
||||
callback(0.8, "Finish parsing.")
|
||||
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
|
||||
|
||||
# is it English
|
||||
@ -118,7 +118,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
|
||||
# Remove 'Contents' part
|
||||
i = 0
|
||||
while i < len(sections):
|
||||
if not re.match(r"(Contents|目录|目次)$", re.sub(r"( | |\u3000)+", "", sections[i].split("@@")[0])):
|
||||
if not re.match(r"(contents|目录|目次|table of contents)$", re.sub(r"( | |\u3000)+", "", sections[i].split("@@")[0], re.IGNORECASE)):
|
||||
i += 1
|
||||
continue
|
||||
sections.pop(i)
|
||||
@ -133,7 +133,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
|
||||
for j in range(i, min(i+128, len(sections))):
|
||||
if not re.match(prefix, sections[j]):
|
||||
continue
|
||||
for k in range(i, j):sections.pop(i)
|
||||
for _ in range(i, j):sections.pop(i)
|
||||
break
|
||||
|
||||
bull = bullets_category(sections)
|
||||
|
@ -1,6 +1,6 @@
|
||||
import copy
|
||||
import re
|
||||
from rag.app import callback__, tokenize
|
||||
from rag.app import tokenize
|
||||
from rag.nlp import huqie
|
||||
from rag.parser.pdf_parser import HuParser
|
||||
from rag.utils import num_tokens_from_string
|
||||
@ -14,19 +14,19 @@ class Pdf(HuParser):
|
||||
zoomin,
|
||||
from_page,
|
||||
to_page)
|
||||
callback__(0.2, "OCR finished.", callback)
|
||||
callback(0.2, "OCR finished.")
|
||||
|
||||
from timeit import default_timer as timer
|
||||
start = timer()
|
||||
self._layouts_paddle(zoomin)
|
||||
callback__(0.5, "Layout analysis finished.", callback)
|
||||
callback(0.5, "Layout analysis finished.")
|
||||
print("paddle layouts:", timer() - start)
|
||||
self._table_transformer_job(zoomin)
|
||||
callback__(0.7, "Table analysis finished.", callback)
|
||||
callback(0.7, "Table analysis finished.")
|
||||
self._text_merge()
|
||||
self._concat_downward(concat_between_pages=False)
|
||||
self._filter_forpages()
|
||||
callback__(0.77, "Text merging finished", callback)
|
||||
callback(0.77, "Text merging finished")
|
||||
tbls = self._extract_table_figure(True, zoomin, False)
|
||||
|
||||
# clean mess
|
||||
@ -34,20 +34,8 @@ class Pdf(HuParser):
|
||||
b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip())
|
||||
|
||||
# merge chunks with the same bullets
|
||||
i = 0
|
||||
while i + 1 < len(self.boxes):
|
||||
b = self.boxes[i]
|
||||
b_ = self.boxes[i + 1]
|
||||
if b["text"].strip()[0] != b_["text"].strip()[0] \
|
||||
or b["page_number"]!=b_["page_number"] \
|
||||
or b["top"] > b_["bottom"]:
|
||||
i += 1
|
||||
continue
|
||||
b_["text"] = b["text"] + "\n" + b_["text"]
|
||||
b_["x0"] = min(b["x0"], b_["x0"])
|
||||
b_["x1"] = max(b["x1"], b_["x1"])
|
||||
b_["top"] = b["top"]
|
||||
self.boxes.pop(i)
|
||||
self._merge_with_same_bullet()
|
||||
|
||||
# merge title with decent chunk
|
||||
i = 0
|
||||
while i + 1 < len(self.boxes):
|
||||
@ -62,7 +50,7 @@ class Pdf(HuParser):
|
||||
b_["top"] = b["top"]
|
||||
self.boxes.pop(i)
|
||||
|
||||
callback__(0.8, "Parsing finished", callback)
|
||||
callback(0.8, "Parsing finished")
|
||||
for b in self.boxes: print(b["text"], b.get("layoutno"))
|
||||
|
||||
print(tbls)
|
||||
|
@ -1,11 +1,9 @@
|
||||
import copy
|
||||
import re
|
||||
from collections import Counter
|
||||
from rag.app import callback__, bullets_category, BULLET_PATTERN, is_english, tokenize
|
||||
from rag.nlp import huqie, stemmer
|
||||
from rag.parser.docx_parser import HuDocxParser
|
||||
from rag.app import tokenize
|
||||
from rag.nlp import huqie
|
||||
from rag.parser.pdf_parser import HuParser
|
||||
from nltk.tokenize import word_tokenize
|
||||
import numpy as np
|
||||
from rag.utils import num_tokens_from_string
|
||||
|
||||
@ -18,20 +16,20 @@ class Pdf(HuParser):
|
||||
zoomin,
|
||||
from_page,
|
||||
to_page)
|
||||
callback__(0.2, "OCR finished.", callback)
|
||||
callback(0.2, "OCR finished.")
|
||||
|
||||
from timeit import default_timer as timer
|
||||
start = timer()
|
||||
self._layouts_paddle(zoomin)
|
||||
callback__(0.47, "Layout analysis finished", callback)
|
||||
callback(0.47, "Layout analysis finished")
|
||||
print("paddle layouts:", timer() - start)
|
||||
self._table_transformer_job(zoomin)
|
||||
callback__(0.68, "Table analysis finished", callback)
|
||||
callback(0.68, "Table analysis finished")
|
||||
self._text_merge()
|
||||
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
|
||||
self._concat_downward(concat_between_pages=False)
|
||||
self._filter_forpages()
|
||||
callback__(0.75, "Text merging finished.", callback)
|
||||
callback(0.75, "Text merging finished.")
|
||||
tbls = self._extract_table_figure(True, zoomin, False)
|
||||
|
||||
# clean mess
|
||||
@ -101,7 +99,7 @@ class Pdf(HuParser):
|
||||
break
|
||||
if not abstr: i = 0
|
||||
|
||||
callback__(0.8, "Page {}~{}: Text merging finished".format(from_page, min(to_page, self.total_page)), callback)
|
||||
callback(0.8, "Page {}~{}: Text merging finished".format(from_page, min(to_page, self.total_page)))
|
||||
for b in self.boxes: print(b["text"], b.get("layoutno"))
|
||||
print(tbls)
|
||||
|
||||
|
@ -3,7 +3,7 @@ import re
|
||||
from io import BytesIO
|
||||
from pptx import Presentation
|
||||
|
||||
from rag.app import callback__, tokenize, is_english
|
||||
from rag.app import tokenize, is_english
|
||||
from rag.nlp import huqie
|
||||
from rag.parser.pdf_parser import HuParser
|
||||
|
||||
@ -43,7 +43,7 @@ class Ppt(object):
|
||||
if txt: texts.append(txt)
|
||||
txts.append("\n".join(texts))
|
||||
|
||||
callback__(0.5, "Text extraction finished.", callback)
|
||||
callback(0.5, "Text extraction finished.")
|
||||
import aspose.slides as slides
|
||||
import aspose.pydrawing as drawing
|
||||
imgs = []
|
||||
@ -53,7 +53,7 @@ class Ppt(object):
|
||||
slide.get_thumbnail(0.5, 0.5).save(buffered, drawing.imaging.ImageFormat.jpeg)
|
||||
imgs.append(buffered.getvalue())
|
||||
assert len(imgs) == len(txts), "Slides text and image do not match: {} vs. {}".format(len(imgs), len(txts))
|
||||
callback__(0.9, "Image extraction finished", callback)
|
||||
callback(0.9, "Image extraction finished")
|
||||
self.is_english = is_english(txts)
|
||||
return [(txts[i], imgs[i]) for i in range(len(txts))]
|
||||
|
||||
@ -70,7 +70,7 @@ class Pdf(HuParser):
|
||||
|
||||
def __call__(self, filename, binary=None, from_page=0, to_page=100000, zoomin=3, callback=None):
|
||||
self.__images__(filename if not binary else binary, zoomin, from_page, to_page)
|
||||
callback__(0.8, "Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)), callback)
|
||||
callback(0.8, "Page {}~{}: OCR finished".format(from_page, min(to_page, self.total_page)))
|
||||
assert len(self.boxes) == len(self.page_images), "{} vs. {}".format(len(self.boxes), len(self.page_images))
|
||||
res = []
|
||||
#################### More precisely ###################
|
||||
@ -89,7 +89,7 @@ class Pdf(HuParser):
|
||||
for i in range(len(self.boxes)):
|
||||
lines = "\n".join([b["text"] for b in self.boxes[i] if not self.__garbage(b["text"])])
|
||||
res.append((lines, self.page_images[i]))
|
||||
callback__(0.9, "Page {}~{}: Parsing finished".format(from_page, min(to_page, self.total_page)), callback)
|
||||
callback(0.9, "Page {}~{}: Parsing finished".format(from_page, min(to_page, self.total_page)))
|
||||
return res
|
||||
|
||||
|
||||
|
104
rag/app/qa.py
Normal file
104
rag/app/qa.py
Normal file
@ -0,0 +1,104 @@
|
||||
import random
|
||||
import re
|
||||
from io import BytesIO
|
||||
from nltk import word_tokenize
|
||||
from openpyxl import load_workbook
|
||||
from rag.app import is_english
|
||||
from rag.nlp import huqie, stemmer
|
||||
|
||||
|
||||
class Excel(object):
|
||||
def __call__(self, fnm, binary=None, callback=None):
|
||||
if not binary:
|
||||
wb = load_workbook(fnm)
|
||||
else:
|
||||
wb = load_workbook(BytesIO(binary))
|
||||
total = 0
|
||||
for sheetname in wb.sheetnames:
|
||||
total += len(list(wb[sheetname].rows))
|
||||
|
||||
res, fails = [], []
|
||||
for sheetname in wb.sheetnames:
|
||||
ws = wb[sheetname]
|
||||
rows = list(ws.rows)
|
||||
for i, r in enumerate(rows):
|
||||
q, a = "", ""
|
||||
for cell in r:
|
||||
if not cell.value: continue
|
||||
if not q: q = str(cell.value)
|
||||
elif not a: a = str(cell.value)
|
||||
else: break
|
||||
if q and a: res.append((q, a))
|
||||
else: fails.append(str(i+1))
|
||||
if len(res) % 999 == 0:
|
||||
callback(len(res)*0.6/total, ("Extract Q&A: {}".format(len(res)) + (f"{len(fails)} failure, line: %s..."%(",".join(fails[:3])) if fails else "")))
|
||||
|
||||
callback(0.6, ("Extract Q&A: {}".format(len(res)) + (
|
||||
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
||||
self.is_english = is_english([rmPrefix(q) for q, _ in random.choices(res, k=30) if len(q)>1])
|
||||
return res
|
||||
|
||||
|
||||
def rmPrefix(txt):
|
||||
return re.sub(r"^(问题|答案|回答|user|assistant|Q|A|Question|Answer|问|答)[\t:: ]+", "", txt.strip(), flags=re.IGNORECASE)
|
||||
|
||||
|
||||
def beAdoc(d, q, a, eng):
|
||||
qprefix = "Question: " if eng else "问题:"
|
||||
aprefix = "Answer: " if eng else "回答:"
|
||||
d["content_with_weight"] = "\t".join([qprefix+rmPrefix(q), aprefix+rmPrefix(a)])
|
||||
if eng:
|
||||
d["content_ltks"] = " ".join([stemmer.stem(w) for w in word_tokenize(q)])
|
||||
else:
|
||||
d["content_ltks"] = huqie.qie(q)
|
||||
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
|
||||
return d
|
||||
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
|
||||
|
||||
res = []
|
||||
if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
excel_parser = Excel()
|
||||
for q,a in excel_parser(filename, binary, callback):
|
||||
res.append(beAdoc({}, q, a, excel_parser.is_english))
|
||||
return res
|
||||
elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
txt = ""
|
||||
if binary:
|
||||
txt = binary.decode("utf-8")
|
||||
else:
|
||||
with open(filename, "r") as f:
|
||||
while True:
|
||||
l = f.readline()
|
||||
if not l: break
|
||||
txt += l
|
||||
lines = txt.split("\n")
|
||||
eng = is_english([rmPrefix(l) for l in lines[:100]])
|
||||
fails = []
|
||||
for i, line in enumerate(lines):
|
||||
arr = [l for l in line.split("\t") if len(l) > 1]
|
||||
if len(arr) != 2:
|
||||
fails.append(str(i))
|
||||
continue
|
||||
res.append(beAdoc({}, arr[0], arr[1], eng))
|
||||
if len(res) % 999 == 0:
|
||||
callback(len(res) * 0.6 / len(lines), ("Extract Q&A: {}".format(len(res)) + (
|
||||
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
||||
|
||||
callback(0.6, ("Extract Q&A: {}".format(len(res)) + (
|
||||
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
||||
|
||||
return res
|
||||
|
||||
raise NotImplementedError("file type not supported yet(pptx, pdf supported)")
|
||||
|
||||
|
||||
if __name__== "__main__":
|
||||
import sys
|
||||
def kk(rat, ss):
|
||||
pass
|
||||
print(chunk(sys.argv[1], callback=kk))
|
||||
|
@ -763,7 +763,7 @@ class HuParser:
|
||||
return
|
||||
i = 0
|
||||
while i < len(self.boxes):
|
||||
if not re.match(r"(contents|目录|目次|table of contents)$", re.sub(r"( | |\u3000)+", "", self.boxes[i]["text"].lower())):
|
||||
if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$", re.sub(r"( | |\u3000)+", "", self.boxes[i]["text"].lower())):
|
||||
i += 1
|
||||
continue
|
||||
eng = re.match(r"[0-9a-zA-Z :'.-]{5,}", self.boxes[i]["text"].strip())
|
||||
@ -782,6 +782,22 @@ class HuParser:
|
||||
for k in range(i, j): self.boxes.pop(i)
|
||||
break
|
||||
|
||||
def _merge_with_same_bullet(self):
|
||||
i = 0
|
||||
while i + 1 < len(self.boxes):
|
||||
b = self.boxes[i]
|
||||
b_ = self.boxes[i + 1]
|
||||
if b["text"].strip()[0] != b_["text"].strip()[0] \
|
||||
or b["text"].strip()[0].lower() in set("qwertyuopasdfghjklzxcvbnm") \
|
||||
or b["top"] > b_["bottom"]:
|
||||
i += 1
|
||||
continue
|
||||
b_["text"] = b["text"] + "\n" + b_["text"]
|
||||
b_["x0"] = min(b["x0"], b_["x0"])
|
||||
b_["x1"] = max(b["x1"], b_["x1"])
|
||||
b_["top"] = b["top"]
|
||||
self.boxes.pop(i)
|
||||
|
||||
def _blockType(self, b):
|
||||
patt = [
|
||||
("^(20|19)[0-9]{2}[年/-][0-9]{1,2}[月/-][0-9]{1,2}日*$", "Dt"),
|
||||
|
@ -17,7 +17,7 @@ import logging
|
||||
import os
|
||||
import time
|
||||
import random
|
||||
from timeit import default_timer as timer
|
||||
from datetime import datetime
|
||||
from api.db.db_models import Task
|
||||
from api.db.db_utils import bulk_insert_into_db
|
||||
from api.db.services.task_service import TaskService
|
||||
@ -26,7 +26,7 @@ from rag.settings import cron_logger
|
||||
from rag.utils import MINIO
|
||||
from rag.utils import findMaxTm
|
||||
import pandas as pd
|
||||
from api.db import FileType
|
||||
from api.db import FileType, TaskStatus
|
||||
from api.db.services.document_service import DocumentService
|
||||
from api.settings import database_logger
|
||||
from api.utils import get_format_time, get_uuid
|
||||
@ -105,15 +105,23 @@ def update_progress():
|
||||
prg = 0
|
||||
finished = True
|
||||
bad = 0
|
||||
status = TaskStatus.RUNNING.value
|
||||
for t in tsks:
|
||||
if 0 <= t.progress < 1: finished = False
|
||||
prg += t.progress if t.progress >= 0 else 0
|
||||
msg.append(t.progress_msg)
|
||||
if t.progress == -1: bad += 1
|
||||
prg /= len(tsks)
|
||||
if finished and bad: prg = -1
|
||||
if finished and bad:
|
||||
prg = -1
|
||||
status = TaskStatus.FAIL.value
|
||||
elif finished: status = TaskStatus.DONE.value
|
||||
|
||||
msg = "\n".join(msg)
|
||||
DocumentService.update_by_id(d["id"], {"progress": prg, "progress_msg": msg, "process_duation": timer()-d["process_begin_at"].timestamp()})
|
||||
info = {"process_duation": datetime.timestamp(datetime.now())-d["process_begin_at"].timestamp(), "run": status}
|
||||
if prg !=0 : info["progress"] = prg
|
||||
if msg: info["progress_msg"] = msg
|
||||
DocumentService.update_by_id(d["id"], info)
|
||||
except Exception as e:
|
||||
cron_logger.error("fetch task exception:" + str(e))
|
||||
|
||||
|
@ -24,8 +24,9 @@ import sys
|
||||
from functools import partial
|
||||
from timeit import default_timer as timer
|
||||
|
||||
from elasticsearch_dsl import Q
|
||||
|
||||
from api.db.services.task_service import TaskService
|
||||
from rag.llm import EmbeddingModel, CvModel
|
||||
from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
|
||||
from rag.utils import ELASTICSEARCH
|
||||
from rag.utils import MINIO
|
||||
@ -35,7 +36,7 @@ from rag.nlp import search
|
||||
from io import BytesIO
|
||||
import pandas as pd
|
||||
|
||||
from rag.app import laws, paper, presentation, manual
|
||||
from rag.app import laws, paper, presentation, manual, qa
|
||||
|
||||
from api.db import LLMType, ParserType
|
||||
from api.db.services.document_service import DocumentService
|
||||
@ -51,13 +52,14 @@ FACTORY = {
|
||||
ParserType.PRESENTATION.value: presentation,
|
||||
ParserType.MANUAL.value: manual,
|
||||
ParserType.LAWS.value: laws,
|
||||
ParserType.QA.value: qa,
|
||||
}
|
||||
|
||||
|
||||
def set_progress(task_id, from_page, to_page, prog=None, msg="Processing..."):
|
||||
cancel = TaskService.do_cancel(task_id)
|
||||
if cancel:
|
||||
msg = "Canceled."
|
||||
msg += " [Canceled]"
|
||||
prog = -1
|
||||
|
||||
if to_page > 0: msg = f"Page({from_page}~{to_page}): " + msg
|
||||
@ -166,13 +168,16 @@ def init_kb(row):
|
||||
|
||||
|
||||
def embedding(docs, mdl):
|
||||
tts, cnts = [d["docnm_kwd"] for d in docs], [d["content_with_weight"] for d in docs]
|
||||
tts, cnts = [d["docnm_kwd"] for d in docs if d.get("docnm_kwd")], [d["content_with_weight"] for d in docs]
|
||||
tk_count = 0
|
||||
if len(tts) == len(cnts):
|
||||
tts, c = mdl.encode(tts)
|
||||
tk_count += c
|
||||
|
||||
cnts, c = mdl.encode(cnts)
|
||||
tk_count += c
|
||||
vects = 0.1 * tts + 0.9 * cnts
|
||||
vects = (0.1 * tts + 0.9 * cnts) if len(tts) == len(cnts) else cnts
|
||||
|
||||
assert len(vects) == len(docs)
|
||||
for i, d in enumerate(docs):
|
||||
v = vects[i].tolist()
|
||||
@ -215,12 +220,14 @@ def main(comm, mod):
|
||||
callback(msg="Finished embedding! Start to build index!")
|
||||
init_kb(r)
|
||||
chunk_count = len(set([c["_id"] for c in cks]))
|
||||
callback(1., "Done!")
|
||||
es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
|
||||
if es_r:
|
||||
callback(-1, "Index failure!")
|
||||
cron_logger.error(str(es_r))
|
||||
else:
|
||||
if TaskService.do_cancel(r["id"]):
|
||||
ELASTICSEARCH.deleteByQuery(Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
|
||||
callback(1., "Done!")
|
||||
DocumentService.increment_chunk_num(r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
|
||||
cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks)))
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user