mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-12 21:28:59 +08:00
Support iframe chatbot. (#3961)
### What problem does this PR solve? #3909 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
parent
601d74160b
commit
e9b8c30a38
@ -330,4 +330,7 @@ class Canvas(ABC):
|
||||
q["value"] = v
|
||||
|
||||
def get_preset_param(self):
|
||||
return self.components["begin"]["obj"]._param.query
|
||||
return self.components["begin"]["obj"]._param.query
|
||||
|
||||
def get_component_input_elements(self, cpnnm):
|
||||
return self.components["begin"]["obj"].get_input_elements()
|
@ -476,7 +476,7 @@ class ComponentBase(ABC):
|
||||
self._param.inputs.append({"component_id": q["component_id"],
|
||||
"content": "\n".join(
|
||||
[str(d["content"]) for d in outs[-1].to_dict('records')])})
|
||||
elif q["value"]:
|
||||
elif q.get("value"):
|
||||
self._param.inputs.append({"component_id": None, "content": q["value"]})
|
||||
outs.append(pd.DataFrame([{"content": q["value"]}]))
|
||||
if outs:
|
||||
@ -526,6 +526,21 @@ class ComponentBase(ABC):
|
||||
|
||||
return df
|
||||
|
||||
def get_input_elements(self):
|
||||
assert self._param.query, "Please identify input parameters firstly."
|
||||
eles = []
|
||||
for q in self._param.query:
|
||||
if q.get("component_id"):
|
||||
if q["component_id"].split("@")[0].lower().find("begin") >= 0:
|
||||
cpn_id, key = q["component_id"].split("@")
|
||||
eles.extend(self._canvas.get_component(cpn_id)["obj"]._param.query)
|
||||
continue
|
||||
|
||||
eles.append({"key": q["key"], "component_id": q["component_id"]})
|
||||
else:
|
||||
eles.append({"key": q["key"]})
|
||||
return eles
|
||||
|
||||
def get_stream_input(self):
|
||||
reversed_cpnts = []
|
||||
if len(self._canvas.path) > 1:
|
||||
|
@ -17,6 +17,7 @@ import re
|
||||
from functools import partial
|
||||
import pandas as pd
|
||||
from api.db import LLMType
|
||||
from api.db.services.conversation_service import structure_answer
|
||||
from api.db.services.dialog_service import message_fit_in
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from api import settings
|
||||
@ -104,9 +105,16 @@ class Generate(ComponentBase):
|
||||
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
|
||||
answer += " Please set LLM API-Key in 'User Setting -> Model providers -> API-Key'"
|
||||
res = {"content": answer, "reference": reference}
|
||||
res = structure_answer(None, res, "", "")
|
||||
|
||||
return res
|
||||
|
||||
def get_input_elements(self):
|
||||
if self._param.parameters:
|
||||
return self._param.parameters
|
||||
|
||||
return [{"key": "input"}]
|
||||
|
||||
def _run(self, history, **kwargs):
|
||||
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
|
||||
prompt = self._param.prompt
|
||||
|
@ -186,6 +186,26 @@ def reset():
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/input_elements', methods=['GET']) # noqa: F821
|
||||
@validate_request("id", "component_id")
|
||||
@login_required
|
||||
def input_elements():
|
||||
req = request.json
|
||||
try:
|
||||
e, user_canvas = UserCanvasService.get_by_id(req["id"])
|
||||
if not e:
|
||||
return get_data_error_result(message="canvas not found.")
|
||||
if not UserCanvasService.query(user_id=current_user.id, id=req["id"]):
|
||||
return get_json_result(
|
||||
data=False, message='Only owner of canvas authorized for this operation.',
|
||||
code=RetCode.OPERATING_ERROR)
|
||||
|
||||
canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id)
|
||||
return get_json_result(data=canvas.get_component_input_elements(req["component_id"]))
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/test_db_connect', methods=['POST']) # noqa: F821
|
||||
@validate_request("db_type", "database", "username", "host", "port", "password")
|
||||
@login_required
|
||||
|
@ -18,7 +18,7 @@ import re
|
||||
import traceback
|
||||
from copy import deepcopy
|
||||
|
||||
from api.db.services.conversation_service import ConversationService
|
||||
from api.db.services.conversation_service import ConversationService, structure_answer
|
||||
from api.db.services.user_service import UserTenantService
|
||||
from flask import request, Response
|
||||
from flask_login import login_required, current_user
|
||||
@ -90,6 +90,21 @@ def get():
|
||||
return get_json_result(
|
||||
data=False, message='Only owner of conversation authorized for this operation.',
|
||||
code=settings.RetCode.OPERATING_ERROR)
|
||||
|
||||
def get_value(d, k1, k2):
|
||||
return d.get(k1, d.get(k2))
|
||||
|
||||
for ref in conv.reference:
|
||||
ref["chunks"] = [{
|
||||
"id": get_value(ck, "chunk_id", "id"),
|
||||
"content": get_value(ck, "content", "content_with_weight"),
|
||||
"document_id": get_value(ck, "doc_id", "document_id"),
|
||||
"document_name": get_value(ck, "docnm_kwd", "document_name"),
|
||||
"dataset_id": get_value(ck, "kb_id", "dataset_id"),
|
||||
"image_id": get_value(ck, "image_id", "img_id"),
|
||||
"positions": get_value(ck, "positions", "position_int"),
|
||||
} for ck in ref.get("chunks", [])]
|
||||
|
||||
conv = conv.to_dict()
|
||||
return get_json_result(data=conv)
|
||||
except Exception as e:
|
||||
@ -132,6 +147,7 @@ def list_convsersation():
|
||||
dialog_id=dialog_id,
|
||||
order_by=ConversationService.model.create_time,
|
||||
reverse=True)
|
||||
|
||||
convs = [d.to_dict() for d in convs]
|
||||
return get_json_result(data=convs)
|
||||
except Exception as e:
|
||||
@ -164,24 +180,29 @@ def completion():
|
||||
|
||||
if not conv.reference:
|
||||
conv.reference = []
|
||||
conv.message.append({"role": "assistant", "content": "", "id": message_id})
|
||||
else:
|
||||
def get_value(d, k1, k2):
|
||||
return d.get(k1, d.get(k2))
|
||||
|
||||
for ref in conv.reference:
|
||||
ref["chunks"] = [{
|
||||
"id": get_value(ck, "chunk_id", "id"),
|
||||
"content": get_value(ck, "content", "content_with_weight"),
|
||||
"document_id": get_value(ck, "doc_id", "document_id"),
|
||||
"document_name": get_value(ck, "docnm_kwd", "document_name"),
|
||||
"dataset_id": get_value(ck, "kb_id", "dataset_id"),
|
||||
"image_id": get_value(ck, "image_id", "img_id"),
|
||||
"positions": get_value(ck, "positions", "position_int"),
|
||||
} for ck in ref.get("chunks", [])]
|
||||
|
||||
if not conv.reference:
|
||||
conv.reference = []
|
||||
conv.reference.append({"chunks": [], "doc_aggs": []})
|
||||
|
||||
def fillin_conv(ans):
|
||||
nonlocal conv, message_id
|
||||
if not conv.reference:
|
||||
conv.reference.append(ans["reference"])
|
||||
else:
|
||||
conv.reference[-1] = ans["reference"]
|
||||
conv.message[-1] = {"role": "assistant", "content": ans["answer"],
|
||||
"id": message_id, "prompt": ans.get("prompt", "")}
|
||||
ans["id"] = message_id
|
||||
|
||||
def stream():
|
||||
nonlocal dia, msg, req, conv
|
||||
try:
|
||||
for ans in chat(dia, msg, True, **req):
|
||||
fillin_conv(ans)
|
||||
ans = structure_answer(conv, ans, message_id, conv.id)
|
||||
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
||||
ConversationService.update_by_id(conv.id, conv.to_dict())
|
||||
except Exception as e:
|
||||
@ -202,8 +223,7 @@ def completion():
|
||||
else:
|
||||
answer = None
|
||||
for ans in chat(dia, msg, **req):
|
||||
answer = ans
|
||||
fillin_conv(ans)
|
||||
answer = structure_answer(conv, ans, message_id, req["conversation_id"])
|
||||
ConversationService.update_by_id(conv.id, conv.to_dict())
|
||||
break
|
||||
return get_json_result(data=answer)
|
||||
|
@ -112,6 +112,11 @@ def update(tenant_id, chat_id, session_id):
|
||||
@token_required
|
||||
def chat_completion(tenant_id, chat_id):
|
||||
req = request.json
|
||||
if not DialogService.query(tenant_id=tenant_id,id=chat_id,status=StatusEnum.VALID.value):
|
||||
return get_error_data_result(f"You don't own the chat {chat_id}")
|
||||
if req.get("session_id"):
|
||||
if not ConversationService.query(id=req["session_id"],dialog_id=chat_id):
|
||||
return get_error_data_result(f"You don't own the session {req['session_id']}")
|
||||
if req.get("stream", True):
|
||||
resp = Response(rag_completion(tenant_id, chat_id, **req), mimetype="text/event-stream")
|
||||
resp.headers.add_header("Cache-control", "no-cache")
|
||||
@ -133,6 +138,11 @@ def chat_completion(tenant_id, chat_id):
|
||||
@token_required
|
||||
def agent_completions(tenant_id, agent_id):
|
||||
req = request.json
|
||||
if not UserCanvasService.query(user_id=tenant_id,id=agent_id):
|
||||
return get_error_data_result(f"You don't own the agent {agent_id}")
|
||||
if req.get("session_id"):
|
||||
if not API4ConversationService.query(id=req["session_id"],dialog_id=agent_id):
|
||||
return get_error_data_result(f"You don't own the session {req['session_id']}")
|
||||
if req.get("stream", True):
|
||||
resp = Response(agent_completion(tenant_id, agent_id, **req), mimetype="text/event-stream")
|
||||
resp.headers.add_header("Cache-control", "no-cache")
|
||||
|
@ -14,6 +14,7 @@
|
||||
# limitations under the License.
|
||||
#
|
||||
import json
|
||||
import traceback
|
||||
from uuid import uuid4
|
||||
from agent.canvas import Canvas
|
||||
from api.db.db_models import DB, CanvasTemplate, UserCanvas, API4Conversation
|
||||
@ -58,6 +59,8 @@ def completion(tenant_id, agent_id, question, session_id=None, stream=True, **kw
|
||||
if not isinstance(cvs.dsl, str):
|
||||
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
|
||||
canvas = Canvas(cvs.dsl, tenant_id)
|
||||
canvas.reset()
|
||||
message_id = str(uuid4())
|
||||
|
||||
if not session_id:
|
||||
session_id = get_uuid()
|
||||
@ -84,40 +87,24 @@ def completion(tenant_id, agent_id, question, session_id=None, stream=True, **kw
|
||||
return
|
||||
conv = API4Conversation(**conv)
|
||||
else:
|
||||
session_id = session_id
|
||||
e, conv = API4ConversationService.get_by_id(session_id)
|
||||
assert e, "Session not found!"
|
||||
canvas = Canvas(json.dumps(conv.dsl), tenant_id)
|
||||
|
||||
if not conv.message:
|
||||
conv.message = []
|
||||
messages = conv.message
|
||||
question = {
|
||||
"role": "user",
|
||||
"content": question,
|
||||
"id": str(uuid4())
|
||||
}
|
||||
messages.append(question)
|
||||
msg = []
|
||||
for m in messages:
|
||||
if m["role"] == "system":
|
||||
continue
|
||||
if m["role"] == "assistant" and not msg:
|
||||
continue
|
||||
msg.append(m)
|
||||
if not msg[-1].get("id"):
|
||||
msg[-1]["id"] = get_uuid()
|
||||
message_id = msg[-1]["id"]
|
||||
|
||||
if not conv.reference:
|
||||
conv.reference = []
|
||||
conv.message.append({"role": "assistant", "content": "", "id": message_id})
|
||||
conv.reference.append({"chunks": [], "doc_aggs": []})
|
||||
canvas.messages.append({"role": "user", "content": question, "id": message_id})
|
||||
canvas.add_user_input(question)
|
||||
if not conv.message:
|
||||
conv.message = []
|
||||
conv.message.append({
|
||||
"role": "user",
|
||||
"content": question,
|
||||
"id": message_id
|
||||
})
|
||||
if not conv.reference:
|
||||
conv.reference = []
|
||||
conv.reference.append({"chunks": [], "doc_aggs": []})
|
||||
|
||||
final_ans = {"reference": [], "content": ""}
|
||||
|
||||
canvas.add_user_input(msg[-1]["content"])
|
||||
|
||||
if stream:
|
||||
try:
|
||||
for ans in canvas.run(stream=stream):
|
||||
@ -141,6 +128,7 @@ def completion(tenant_id, agent_id, question, session_id=None, stream=True, **kw
|
||||
conv.dsl = json.loads(str(canvas))
|
||||
API4ConversationService.append_message(conv.id, conv.to_dict())
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
conv.dsl = json.loads(str(canvas))
|
||||
API4ConversationService.append_message(conv.id, conv.to_dict())
|
||||
yield "data:" + json.dumps({"code": 500, "message": str(e),
|
||||
|
@ -21,7 +21,6 @@ from api.db.services.common_service import CommonService
|
||||
from api.db.services.dialog_service import DialogService, chat
|
||||
from api.utils import get_uuid
|
||||
import json
|
||||
from copy import deepcopy
|
||||
|
||||
|
||||
class ConversationService(CommonService):
|
||||
@ -49,30 +48,35 @@ def structure_answer(conv, ans, message_id, session_id):
|
||||
reference = ans["reference"]
|
||||
if not isinstance(reference, dict):
|
||||
reference = {}
|
||||
temp_reference = deepcopy(ans["reference"])
|
||||
if not conv.reference:
|
||||
conv.reference.append(temp_reference)
|
||||
else:
|
||||
conv.reference[-1] = temp_reference
|
||||
conv.message[-1] = {"role": "assistant", "content": ans["answer"], "id": message_id}
|
||||
ans["reference"] = {}
|
||||
|
||||
def get_value(d, k1, k2):
|
||||
return d.get(k1, d.get(k2))
|
||||
chunk_list = [{
|
||||
"id": chunk["chunk_id"],
|
||||
"content": chunk.get("content") if chunk.get("content") else chunk.get("content_with_content"),
|
||||
"document_id": chunk["doc_id"],
|
||||
"document_name": chunk["docnm_kwd"],
|
||||
"dataset_id": chunk["kb_id"],
|
||||
"image_id": chunk["image_id"],
|
||||
"similarity": chunk["similarity"],
|
||||
"vector_similarity": chunk["vector_similarity"],
|
||||
"term_similarity": chunk["term_similarity"],
|
||||
"positions": chunk["positions"],
|
||||
"id": get_value(chunk, "chunk_id", "id"),
|
||||
"content": get_value(chunk, "content", "content_with_weight"),
|
||||
"document_id": get_value(chunk, "doc_id", "document_id"),
|
||||
"document_name": get_value(chunk, "docnm_kwd", "document_name"),
|
||||
"dataset_id": get_value(chunk, "kb_id", "dataset_id"),
|
||||
"image_id": get_value(chunk, "image_id", "img_id"),
|
||||
"positions": get_value(chunk, "positions", "position_int"),
|
||||
} for chunk in reference.get("chunks", [])]
|
||||
|
||||
reference["chunks"] = chunk_list
|
||||
ans["id"] = message_id
|
||||
ans["session_id"] = session_id
|
||||
|
||||
if not conv:
|
||||
return ans
|
||||
|
||||
if not conv.message:
|
||||
conv.message = []
|
||||
if not conv.message or conv.message[-1].get("role", "") != "assistant":
|
||||
conv.message.append({"role": "assistant", "content": ans["answer"], "id": message_id})
|
||||
else:
|
||||
conv.message[-1] = {"role": "assistant", "content": ans["answer"], "id": message_id}
|
||||
if conv.reference:
|
||||
conv.reference[-1] = reference
|
||||
return ans
|
||||
|
||||
|
||||
@ -199,7 +203,6 @@ def iframe_completion(dialog_id, question, session_id=None, stream=True, **kwarg
|
||||
|
||||
if not conv.reference:
|
||||
conv.reference = []
|
||||
conv.message.append({"role": "assistant", "content": "", "id": message_id})
|
||||
conv.reference.append({"chunks": [], "doc_aggs": []})
|
||||
|
||||
if stream:
|
||||
|
@ -18,6 +18,7 @@ import binascii
|
||||
import os
|
||||
import json
|
||||
import re
|
||||
from collections import defaultdict
|
||||
from copy import deepcopy
|
||||
from timeit import default_timer as timer
|
||||
import datetime
|
||||
@ -108,6 +109,32 @@ def llm_id2llm_type(llm_id):
|
||||
return llm["model_type"].strip(",")[-1]
|
||||
|
||||
|
||||
def kb_prompt(kbinfos, max_tokens):
|
||||
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
|
||||
used_token_count = 0
|
||||
chunks_num = 0
|
||||
for i, c in enumerate(knowledges):
|
||||
used_token_count += num_tokens_from_string(c)
|
||||
chunks_num += 1
|
||||
if max_tokens * 0.97 < used_token_count:
|
||||
knowledges = knowledges[:i]
|
||||
break
|
||||
|
||||
doc2chunks = defaultdict(list)
|
||||
for i, ck in enumerate(kbinfos["chunks"]):
|
||||
if i >= chunks_num:
|
||||
break
|
||||
doc2chunks["docnm_kwd"].append(ck["content_with_weight"])
|
||||
|
||||
knowledges = []
|
||||
for nm, chunks in doc2chunks.items():
|
||||
txt = f"Document: {nm} \nContains the following relevant fragments:\n"
|
||||
for i, chunk in enumerate(chunks, 1):
|
||||
txt += f"{i}. {chunk}\n"
|
||||
knowledges.append(txt)
|
||||
return knowledges
|
||||
|
||||
|
||||
def chat(dialog, messages, stream=True, **kwargs):
|
||||
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
|
||||
st = timer()
|
||||
@ -195,32 +222,7 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
dialog.vector_similarity_weight,
|
||||
doc_ids=attachments,
|
||||
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl)
|
||||
|
||||
# Group chunks by document ID
|
||||
doc_chunks = {}
|
||||
for ck in kbinfos["chunks"]:
|
||||
doc_id = ck["doc_id"]
|
||||
if doc_id not in doc_chunks:
|
||||
doc_chunks[doc_id] = []
|
||||
doc_chunks[doc_id].append(ck["content_with_weight"])
|
||||
|
||||
# Create knowledges list with grouped chunks
|
||||
knowledges = []
|
||||
for doc_id, chunks in doc_chunks.items():
|
||||
# Find the corresponding document name
|
||||
doc_name = next((d["doc_name"] for d in kbinfos.get("doc_aggs", []) if d["doc_id"] == doc_id), doc_id)
|
||||
|
||||
# Create a header for the document
|
||||
doc_knowledge = f"Document: {doc_name} \nContains the following relevant fragments:\n"
|
||||
|
||||
# Add numbered fragments
|
||||
for i, chunk in enumerate(chunks, 1):
|
||||
doc_knowledge += f"{i}. {chunk}\n"
|
||||
|
||||
knowledges.append(doc_knowledge)
|
||||
|
||||
|
||||
|
||||
knowledges = kb_prompt(kbinfos, max_tokens)
|
||||
logging.debug(
|
||||
"{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
|
||||
retrieval_tm = timer()
|
||||
@ -603,7 +605,6 @@ def tts(tts_mdl, text):
|
||||
|
||||
def ask(question, kb_ids, tenant_id):
|
||||
kbs = KnowledgebaseService.get_by_ids(kb_ids)
|
||||
tenant_ids = [kb.tenant_id for kb in kbs]
|
||||
embd_nms = list(set([kb.embd_id for kb in kbs]))
|
||||
|
||||
is_kg = all([kb.parser_id == ParserType.KG for kb in kbs])
|
||||
@ -612,45 +613,9 @@ def ask(question, kb_ids, tenant_id):
|
||||
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_nms[0])
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
|
||||
max_tokens = chat_mdl.max_length
|
||||
|
||||
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
|
||||
kbinfos = retr.retrieval(question, embd_mdl, tenant_ids, kb_ids, 1, 12, 0.1, 0.3, aggs=False)
|
||||
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
|
||||
|
||||
used_token_count = 0
|
||||
chunks_num = 0
|
||||
for i, c in enumerate(knowledges):
|
||||
used_token_count += num_tokens_from_string(c)
|
||||
if max_tokens * 0.97 < used_token_count:
|
||||
knowledges = knowledges[:i]
|
||||
chunks_num = chunks_num + 1
|
||||
break
|
||||
|
||||
# Group chunks by document ID
|
||||
doc_chunks = {}
|
||||
counter_chunks = 0
|
||||
for ck in kbinfos["chunks"]:
|
||||
if counter_chunks < chunks_num:
|
||||
counter_chunks = counter_chunks + 1
|
||||
doc_id = ck["doc_id"]
|
||||
if doc_id not in doc_chunks:
|
||||
doc_chunks[doc_id] = []
|
||||
doc_chunks[doc_id].append(ck["content_with_weight"])
|
||||
|
||||
# Create knowledges list with grouped chunks
|
||||
knowledges = []
|
||||
for doc_id, chunks in doc_chunks.items():
|
||||
# Find the corresponding document name
|
||||
doc_name = next((d["doc_name"] for d in kbinfos.get("doc_aggs", []) if d["doc_id"] == doc_id), doc_id)
|
||||
|
||||
# Create a header for the document
|
||||
doc_knowledge = f"Document: {doc_name} \nContains the following relevant fragments:\n"
|
||||
|
||||
# Add numbered fragments
|
||||
for i, chunk in enumerate(chunks, 1):
|
||||
doc_knowledge += f"{i}. {chunk}\n"
|
||||
|
||||
knowledges.append(doc_knowledge)
|
||||
|
||||
knowledges = kb_prompt(kbinfos, max_tokens)
|
||||
prompt = """
|
||||
Role: You're a smart assistant. Your name is Miss R.
|
||||
Task: Summarize the information from knowledge bases and answer user's question.
|
||||
@ -660,25 +625,25 @@ def ask(question, kb_ids, tenant_id):
|
||||
- Answer with markdown format text.
|
||||
- Answer in language of user's question.
|
||||
- DO NOT make things up, especially for numbers.
|
||||
|
||||
|
||||
### Information from knowledge bases
|
||||
%s
|
||||
|
||||
|
||||
The above is information from knowledge bases.
|
||||
|
||||
"""%"\n".join(knowledges)
|
||||
|
||||
""" % "\n".join(knowledges)
|
||||
msg = [{"role": "user", "content": question}]
|
||||
|
||||
def decorate_answer(answer):
|
||||
nonlocal knowledges, kbinfos, prompt
|
||||
answer, idx = retr.insert_citations(answer,
|
||||
[ck["content_ltks"]
|
||||
for ck in kbinfos["chunks"]],
|
||||
[ck["vector"]
|
||||
for ck in kbinfos["chunks"]],
|
||||
embd_mdl,
|
||||
tkweight=0.7,
|
||||
vtweight=0.3)
|
||||
[ck["content_ltks"]
|
||||
for ck in kbinfos["chunks"]],
|
||||
[ck["vector"]
|
||||
for ck in kbinfos["chunks"]],
|
||||
embd_mdl,
|
||||
tkweight=0.7,
|
||||
vtweight=0.3)
|
||||
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
|
||||
recall_docs = [
|
||||
d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
|
||||
@ -691,7 +656,7 @@ def ask(question, kb_ids, tenant_id):
|
||||
del c["vector"]
|
||||
|
||||
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
|
||||
answer += " Please set LLM API-Key in 'User Setting -> Model providers -> API-Key'"
|
||||
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
|
||||
return {"answer": answer, "reference": refs}
|
||||
|
||||
answer = ""
|
||||
|
Loading…
x
Reference in New Issue
Block a user