diff --git a/agent/component/akshare.py b/agent/component/akshare.py
index c6ed2fb6f..36b3131b3 100644
--- a/agent/component/akshare.py
+++ b/agent/component/akshare.py
@@ -1,56 +1,56 @@
-#
-# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-from abc import ABC
-import pandas as pd
-import akshare as ak
-from agent.component.base import ComponentBase, ComponentParamBase
-
-
-class AkShareParam(ComponentParamBase):
- """
- Define the AkShare component parameters.
- """
-
- def __init__(self):
- super().__init__()
- self.top_n = 10
-
- def check(self):
- self.check_positive_integer(self.top_n, "Top N")
-
-
-class AkShare(ComponentBase, ABC):
- component_name = "AkShare"
-
- def _run(self, history, **kwargs):
- ans = self.get_input()
- ans = ",".join(ans["content"]) if "content" in ans else ""
- if not ans:
- return AkShare.be_output("")
-
- try:
- ak_res = []
- stock_news_em_df = ak.stock_news_em(symbol=ans)
- stock_news_em_df = stock_news_em_df.head(self._param.top_n)
- ak_res = [{"content": '' + i["新闻标题"] + '\n 新闻内容: ' + i[
- "新闻内容"] + " \n发布时间:" + i["发布时间"] + " \n文章来源: " + i["文章来源"]} for index, i in stock_news_em_df.iterrows()]
- except Exception as e:
- return AkShare.be_output("**ERROR**: " + str(e))
-
- if not ak_res:
- return AkShare.be_output("")
-
- return pd.DataFrame(ak_res)
+#
+# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+from abc import ABC
+import pandas as pd
+import akshare as ak
+from agent.component.base import ComponentBase, ComponentParamBase
+
+
+class AkShareParam(ComponentParamBase):
+ """
+ Define the AkShare component parameters.
+ """
+
+ def __init__(self):
+ super().__init__()
+ self.top_n = 10
+
+ def check(self):
+ self.check_positive_integer(self.top_n, "Top N")
+
+
+class AkShare(ComponentBase, ABC):
+ component_name = "AkShare"
+
+ def _run(self, history, **kwargs):
+ ans = self.get_input()
+ ans = ",".join(ans["content"]) if "content" in ans else ""
+ if not ans:
+ return AkShare.be_output("")
+
+ try:
+ ak_res = []
+ stock_news_em_df = ak.stock_news_em(symbol=ans)
+ stock_news_em_df = stock_news_em_df.head(self._param.top_n)
+ ak_res = [{"content": '' + i["新闻标题"] + '\n 新闻内容: ' + i[
+ "新闻内容"] + " \n发布时间:" + i["发布时间"] + " \n文章来源: " + i["文章来源"]} for index, i in stock_news_em_df.iterrows()]
+ except Exception as e:
+ return AkShare.be_output("**ERROR**: " + str(e))
+
+ if not ak_res:
+ return AkShare.be_output("")
+
+ return pd.DataFrame(ak_res)
diff --git a/agent/component/concentrator.py b/agent/component/concentrator.py
index 8ebaad507..efb9dd840 100644
--- a/agent/component/concentrator.py
+++ b/agent/component/concentrator.py
@@ -1,36 +1,36 @@
-#
-# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-from abc import ABC
-from agent.component.base import ComponentBase, ComponentParamBase
-
-
-class ConcentratorParam(ComponentParamBase):
- """
- Define the Concentrator component parameters.
- """
-
- def __init__(self):
- super().__init__()
-
- def check(self):
- return True
-
-
-class Concentrator(ComponentBase, ABC):
- component_name = "Concentrator"
-
- def _run(self, history, **kwargs):
+#
+# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+from abc import ABC
+from agent.component.base import ComponentBase, ComponentParamBase
+
+
+class ConcentratorParam(ComponentParamBase):
+ """
+ Define the Concentrator component parameters.
+ """
+
+ def __init__(self):
+ super().__init__()
+
+ def check(self):
+ return True
+
+
+class Concentrator(ComponentBase, ABC):
+ component_name = "Concentrator"
+
+ def _run(self, history, **kwargs):
return Concentrator.be_output("")
\ No newline at end of file
diff --git a/agent/component/jin10.py b/agent/component/jin10.py
index 9ff064da1..583a18286 100644
--- a/agent/component/jin10.py
+++ b/agent/component/jin10.py
@@ -1,130 +1,130 @@
-#
-# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-import json
-from abc import ABC
-import pandas as pd
-import requests
-from agent.component.base import ComponentBase, ComponentParamBase
-
-
-class Jin10Param(ComponentParamBase):
- """
- Define the Jin10 component parameters.
- """
-
- def __init__(self):
- super().__init__()
- self.type = "flash"
- self.secret_key = "xxx"
- self.flash_type = '1'
- self.calendar_type = 'cj'
- self.calendar_datatype = 'data'
- self.symbols_type = 'GOODS'
- self.symbols_datatype = 'symbols'
- self.contain = ""
- self.filter = ""
-
- def check(self):
- self.check_valid_value(self.type, "Type", ['flash', 'calendar', 'symbols', 'news'])
- self.check_valid_value(self.flash_type, "Flash Type", ['1', '2', '3', '4', '5'])
- self.check_valid_value(self.calendar_type, "Calendar Type", ['cj', 'qh', 'hk', 'us'])
- self.check_valid_value(self.calendar_datatype, "Calendar DataType", ['data', 'event', 'holiday'])
- self.check_valid_value(self.symbols_type, "Symbols Type", ['GOODS', 'FOREX', 'FUTURE', 'CRYPTO'])
- self.check_valid_value(self.symbols_datatype, 'Symbols DataType', ['symbols', 'quotes'])
-
-
-class Jin10(ComponentBase, ABC):
- component_name = "Jin10"
-
- def _run(self, history, **kwargs):
- ans = self.get_input()
- ans = " - ".join(ans["content"]) if "content" in ans else ""
- if not ans:
- return Jin10.be_output("")
-
- jin10_res = []
- headers = {'secret-key': self._param.secret_key}
- try:
- if self._param.type == "flash":
- params = {
- 'category': self._param.flash_type,
- 'contain': self._param.contain,
- 'filter': self._param.filter
- }
- response = requests.get(
- url='https://open-data-api.jin10.com/data-api/flash?category=' + self._param.flash_type,
- headers=headers, data=json.dumps(params))
- response = response.json()
- for i in response['data']:
- jin10_res.append({"content": i['data']['content']})
- if self._param.type == "calendar":
- params = {
- 'category': self._param.calendar_type
- }
- response = requests.get(
- url='https://open-data-api.jin10.com/data-api/calendar/' + self._param.calendar_datatype + '?category=' + self._param.calendar_type,
- headers=headers, data=json.dumps(params))
-
- response = response.json()
- jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
- if self._param.type == "symbols":
- params = {
- 'type': self._param.symbols_type
- }
- if self._param.symbols_datatype == "quotes":
- params['codes'] = 'BTCUSD'
- response = requests.get(
- url='https://open-data-api.jin10.com/data-api/' + self._param.symbols_datatype + '?type=' + self._param.symbols_type,
- headers=headers, data=json.dumps(params))
- response = response.json()
- if self._param.symbols_datatype == "symbols":
- for i in response['data']:
- i['Commodity Code'] = i['c']
- i['Stock Exchange'] = i['e']
- i['Commodity Name'] = i['n']
- i['Commodity Type'] = i['t']
- del i['c'], i['e'], i['n'], i['t']
- if self._param.symbols_datatype == "quotes":
- for i in response['data']:
- i['Selling Price'] = i['a']
- i['Buying Price'] = i['b']
- i['Commodity Code'] = i['c']
- i['Stock Exchange'] = i['e']
- i['Highest Price'] = i['h']
- i['Yesterday’s Closing Price'] = i['hc']
- i['Lowest Price'] = i['l']
- i['Opening Price'] = i['o']
- i['Latest Price'] = i['p']
- i['Market Quote Time'] = i['t']
- del i['a'], i['b'], i['c'], i['e'], i['h'], i['hc'], i['l'], i['o'], i['p'], i['t']
- jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
- if self._param.type == "news":
- params = {
- 'contain': self._param.contain,
- 'filter': self._param.filter
- }
- response = requests.get(
- url='https://open-data-api.jin10.com/data-api/news',
- headers=headers, data=json.dumps(params))
- response = response.json()
- jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
- except Exception as e:
- return Jin10.be_output("**ERROR**: " + str(e))
-
- if not jin10_res:
- return Jin10.be_output("")
-
- return pd.DataFrame(jin10_res)
+#
+# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+import json
+from abc import ABC
+import pandas as pd
+import requests
+from agent.component.base import ComponentBase, ComponentParamBase
+
+
+class Jin10Param(ComponentParamBase):
+ """
+ Define the Jin10 component parameters.
+ """
+
+ def __init__(self):
+ super().__init__()
+ self.type = "flash"
+ self.secret_key = "xxx"
+ self.flash_type = '1'
+ self.calendar_type = 'cj'
+ self.calendar_datatype = 'data'
+ self.symbols_type = 'GOODS'
+ self.symbols_datatype = 'symbols'
+ self.contain = ""
+ self.filter = ""
+
+ def check(self):
+ self.check_valid_value(self.type, "Type", ['flash', 'calendar', 'symbols', 'news'])
+ self.check_valid_value(self.flash_type, "Flash Type", ['1', '2', '3', '4', '5'])
+ self.check_valid_value(self.calendar_type, "Calendar Type", ['cj', 'qh', 'hk', 'us'])
+ self.check_valid_value(self.calendar_datatype, "Calendar DataType", ['data', 'event', 'holiday'])
+ self.check_valid_value(self.symbols_type, "Symbols Type", ['GOODS', 'FOREX', 'FUTURE', 'CRYPTO'])
+ self.check_valid_value(self.symbols_datatype, 'Symbols DataType', ['symbols', 'quotes'])
+
+
+class Jin10(ComponentBase, ABC):
+ component_name = "Jin10"
+
+ def _run(self, history, **kwargs):
+ ans = self.get_input()
+ ans = " - ".join(ans["content"]) if "content" in ans else ""
+ if not ans:
+ return Jin10.be_output("")
+
+ jin10_res = []
+ headers = {'secret-key': self._param.secret_key}
+ try:
+ if self._param.type == "flash":
+ params = {
+ 'category': self._param.flash_type,
+ 'contain': self._param.contain,
+ 'filter': self._param.filter
+ }
+ response = requests.get(
+ url='https://open-data-api.jin10.com/data-api/flash?category=' + self._param.flash_type,
+ headers=headers, data=json.dumps(params))
+ response = response.json()
+ for i in response['data']:
+ jin10_res.append({"content": i['data']['content']})
+ if self._param.type == "calendar":
+ params = {
+ 'category': self._param.calendar_type
+ }
+ response = requests.get(
+ url='https://open-data-api.jin10.com/data-api/calendar/' + self._param.calendar_datatype + '?category=' + self._param.calendar_type,
+ headers=headers, data=json.dumps(params))
+
+ response = response.json()
+ jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
+ if self._param.type == "symbols":
+ params = {
+ 'type': self._param.symbols_type
+ }
+ if self._param.symbols_datatype == "quotes":
+ params['codes'] = 'BTCUSD'
+ response = requests.get(
+ url='https://open-data-api.jin10.com/data-api/' + self._param.symbols_datatype + '?type=' + self._param.symbols_type,
+ headers=headers, data=json.dumps(params))
+ response = response.json()
+ if self._param.symbols_datatype == "symbols":
+ for i in response['data']:
+ i['Commodity Code'] = i['c']
+ i['Stock Exchange'] = i['e']
+ i['Commodity Name'] = i['n']
+ i['Commodity Type'] = i['t']
+ del i['c'], i['e'], i['n'], i['t']
+ if self._param.symbols_datatype == "quotes":
+ for i in response['data']:
+ i['Selling Price'] = i['a']
+ i['Buying Price'] = i['b']
+ i['Commodity Code'] = i['c']
+ i['Stock Exchange'] = i['e']
+ i['Highest Price'] = i['h']
+ i['Yesterday’s Closing Price'] = i['hc']
+ i['Lowest Price'] = i['l']
+ i['Opening Price'] = i['o']
+ i['Latest Price'] = i['p']
+ i['Market Quote Time'] = i['t']
+ del i['a'], i['b'], i['c'], i['e'], i['h'], i['hc'], i['l'], i['o'], i['p'], i['t']
+ jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
+ if self._param.type == "news":
+ params = {
+ 'contain': self._param.contain,
+ 'filter': self._param.filter
+ }
+ response = requests.get(
+ url='https://open-data-api.jin10.com/data-api/news',
+ headers=headers, data=json.dumps(params))
+ response = response.json()
+ jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
+ except Exception as e:
+ return Jin10.be_output("**ERROR**: " + str(e))
+
+ if not jin10_res:
+ return Jin10.be_output("")
+
+ return pd.DataFrame(jin10_res)
diff --git a/agent/component/tushare.py b/agent/component/tushare.py
index 236c79f63..bb9d34fe9 100644
--- a/agent/component/tushare.py
+++ b/agent/component/tushare.py
@@ -1,72 +1,72 @@
-#
-# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-import json
-from abc import ABC
-import pandas as pd
-import time
-import requests
-from agent.component.base import ComponentBase, ComponentParamBase
-
-
-class TuShareParam(ComponentParamBase):
- """
- Define the TuShare component parameters.
- """
-
- def __init__(self):
- super().__init__()
- self.token = "xxx"
- self.src = "eastmoney"
- self.start_date = "2024-01-01 09:00:00"
- self.end_date = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
- self.keyword = ""
-
- def check(self):
- self.check_valid_value(self.src, "Quick News Source",
- ["sina", "wallstreetcn", "10jqka", "eastmoney", "yuncaijing", "fenghuang", "jinrongjie"])
-
-
-class TuShare(ComponentBase, ABC):
- component_name = "TuShare"
-
- def _run(self, history, **kwargs):
- ans = self.get_input()
- ans = ",".join(ans["content"]) if "content" in ans else ""
- if not ans:
- return TuShare.be_output("")
-
- try:
- tus_res = []
- params = {
- "api_name": "news",
- "token": self._param.token,
- "params": {"src": self._param.src, "start_date": self._param.start_date,
- "end_date": self._param.end_date}
- }
- response = requests.post(url="http://api.tushare.pro", data=json.dumps(params).encode('utf-8'))
- response = response.json()
- if response['code'] != 0:
- return TuShare.be_output(response['msg'])
- df = pd.DataFrame(response['data']['items'])
- df.columns = response['data']['fields']
- tus_res.append({"content": (df[df['content'].str.contains(self._param.keyword, case=False)]).to_markdown()})
- except Exception as e:
- return TuShare.be_output("**ERROR**: " + str(e))
-
- if not tus_res:
- return TuShare.be_output("")
-
- return pd.DataFrame(tus_res)
+#
+# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+import json
+from abc import ABC
+import pandas as pd
+import time
+import requests
+from agent.component.base import ComponentBase, ComponentParamBase
+
+
+class TuShareParam(ComponentParamBase):
+ """
+ Define the TuShare component parameters.
+ """
+
+ def __init__(self):
+ super().__init__()
+ self.token = "xxx"
+ self.src = "eastmoney"
+ self.start_date = "2024-01-01 09:00:00"
+ self.end_date = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
+ self.keyword = ""
+
+ def check(self):
+ self.check_valid_value(self.src, "Quick News Source",
+ ["sina", "wallstreetcn", "10jqka", "eastmoney", "yuncaijing", "fenghuang", "jinrongjie"])
+
+
+class TuShare(ComponentBase, ABC):
+ component_name = "TuShare"
+
+ def _run(self, history, **kwargs):
+ ans = self.get_input()
+ ans = ",".join(ans["content"]) if "content" in ans else ""
+ if not ans:
+ return TuShare.be_output("")
+
+ try:
+ tus_res = []
+ params = {
+ "api_name": "news",
+ "token": self._param.token,
+ "params": {"src": self._param.src, "start_date": self._param.start_date,
+ "end_date": self._param.end_date}
+ }
+ response = requests.post(url="http://api.tushare.pro", data=json.dumps(params).encode('utf-8'))
+ response = response.json()
+ if response['code'] != 0:
+ return TuShare.be_output(response['msg'])
+ df = pd.DataFrame(response['data']['items'])
+ df.columns = response['data']['fields']
+ tus_res.append({"content": (df[df['content'].str.contains(self._param.keyword, case=False)]).to_markdown()})
+ except Exception as e:
+ return TuShare.be_output("**ERROR**: " + str(e))
+
+ if not tus_res:
+ return TuShare.be_output("")
+
+ return pd.DataFrame(tus_res)
diff --git a/agent/component/wencai.py b/agent/component/wencai.py
index e518c54a2..8f8c35181 100644
--- a/agent/component/wencai.py
+++ b/agent/component/wencai.py
@@ -1,80 +1,80 @@
-#
-# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-from abc import ABC
-import pandas as pd
-import pywencai
-from agent.component.base import ComponentBase, ComponentParamBase
-
-
-class WenCaiParam(ComponentParamBase):
- """
- Define the WenCai component parameters.
- """
-
- def __init__(self):
- super().__init__()
- self.top_n = 10
- self.query_type = "stock"
-
- def check(self):
- self.check_positive_integer(self.top_n, "Top N")
- self.check_valid_value(self.query_type, "Query type",
- ['stock', 'zhishu', 'fund', 'hkstock', 'usstock', 'threeboard', 'conbond', 'insurance',
- 'futures', 'lccp',
- 'foreign_exchange'])
-
-
-class WenCai(ComponentBase, ABC):
- component_name = "WenCai"
-
- def _run(self, history, **kwargs):
- ans = self.get_input()
- ans = ",".join(ans["content"]) if "content" in ans else ""
- if not ans:
- return WenCai.be_output("")
-
- try:
- wencai_res = []
- res = pywencai.get(query=ans, query_type=self._param.query_type, perpage=self._param.top_n)
- if isinstance(res, pd.DataFrame):
- wencai_res.append({"content": res.to_markdown()})
- if isinstance(res, dict):
- for item in res.items():
- if isinstance(item[1], list):
- wencai_res.append({"content": item[0] + "\n" + pd.DataFrame(item[1]).to_markdown()})
- continue
- if isinstance(item[1], str):
- wencai_res.append({"content": item[0] + "\n" + item[1]})
- continue
- if isinstance(item[1], dict):
- if "meta" in item[1].keys():
- continue
- wencai_res.append({"content": pd.DataFrame.from_dict(item[1], orient='index').to_markdown()})
- continue
- if isinstance(item[1], pd.DataFrame):
- if "image_url" in item[1].columns:
- continue
- wencai_res.append({"content": item[1].to_markdown()})
- continue
-
- wencai_res.append({"content": item[0] + "\n" + str(item[1])})
- except Exception as e:
- return WenCai.be_output("**ERROR**: " + str(e))
-
- if not wencai_res:
- return WenCai.be_output("")
-
- return pd.DataFrame(wencai_res)
+#
+# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+from abc import ABC
+import pandas as pd
+import pywencai
+from agent.component.base import ComponentBase, ComponentParamBase
+
+
+class WenCaiParam(ComponentParamBase):
+ """
+ Define the WenCai component parameters.
+ """
+
+ def __init__(self):
+ super().__init__()
+ self.top_n = 10
+ self.query_type = "stock"
+
+ def check(self):
+ self.check_positive_integer(self.top_n, "Top N")
+ self.check_valid_value(self.query_type, "Query type",
+ ['stock', 'zhishu', 'fund', 'hkstock', 'usstock', 'threeboard', 'conbond', 'insurance',
+ 'futures', 'lccp',
+ 'foreign_exchange'])
+
+
+class WenCai(ComponentBase, ABC):
+ component_name = "WenCai"
+
+ def _run(self, history, **kwargs):
+ ans = self.get_input()
+ ans = ",".join(ans["content"]) if "content" in ans else ""
+ if not ans:
+ return WenCai.be_output("")
+
+ try:
+ wencai_res = []
+ res = pywencai.get(query=ans, query_type=self._param.query_type, perpage=self._param.top_n)
+ if isinstance(res, pd.DataFrame):
+ wencai_res.append({"content": res.to_markdown()})
+ if isinstance(res, dict):
+ for item in res.items():
+ if isinstance(item[1], list):
+ wencai_res.append({"content": item[0] + "\n" + pd.DataFrame(item[1]).to_markdown()})
+ continue
+ if isinstance(item[1], str):
+ wencai_res.append({"content": item[0] + "\n" + item[1]})
+ continue
+ if isinstance(item[1], dict):
+ if "meta" in item[1].keys():
+ continue
+ wencai_res.append({"content": pd.DataFrame.from_dict(item[1], orient='index').to_markdown()})
+ continue
+ if isinstance(item[1], pd.DataFrame):
+ if "image_url" in item[1].columns:
+ continue
+ wencai_res.append({"content": item[1].to_markdown()})
+ continue
+
+ wencai_res.append({"content": item[0] + "\n" + str(item[1])})
+ except Exception as e:
+ return WenCai.be_output("**ERROR**: " + str(e))
+
+ if not wencai_res:
+ return WenCai.be_output("")
+
+ return pd.DataFrame(wencai_res)
diff --git a/agent/component/yahoofinance.py b/agent/component/yahoofinance.py
index ac932bc68..f31c7aed4 100644
--- a/agent/component/yahoofinance.py
+++ b/agent/component/yahoofinance.py
@@ -1,84 +1,84 @@
-#
-# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-import logging
-from abc import ABC
-import pandas as pd
-from agent.component.base import ComponentBase, ComponentParamBase
-import yfinance as yf
-
-
-class YahooFinanceParam(ComponentParamBase):
- """
- Define the YahooFinance component parameters.
- """
-
- def __init__(self):
- super().__init__()
- self.info = True
- self.history = False
- self.count = False
- self.financials = False
- self.income_stmt = False
- self.balance_sheet = False
- self.cash_flow_statement = False
- self.news = True
-
- def check(self):
- self.check_boolean(self.info, "get all stock info")
- self.check_boolean(self.history, "get historical market data")
- self.check_boolean(self.count, "show share count")
- self.check_boolean(self.financials, "show financials")
- self.check_boolean(self.income_stmt, "income statement")
- self.check_boolean(self.balance_sheet, "balance sheet")
- self.check_boolean(self.cash_flow_statement, "cash flow statement")
- self.check_boolean(self.news, "show news")
-
-
-class YahooFinance(ComponentBase, ABC):
- component_name = "YahooFinance"
-
- def _run(self, history, **kwargs):
- ans = self.get_input()
- ans = "".join(ans["content"]) if "content" in ans else ""
- if not ans:
- return YahooFinance.be_output("")
-
- yohoo_res = []
- try:
- msft = yf.Ticker(ans)
- if self._param.info:
- yohoo_res.append({"content": "info:\n" + pd.Series(msft.info).to_markdown() + "\n"})
- if self._param.history:
- yohoo_res.append({"content": "history:\n" + msft.history().to_markdown() + "\n"})
- if self._param.financials:
- yohoo_res.append({"content": "calendar:\n" + pd.DataFrame(msft.calendar).to_markdown() + "\n"})
- if self._param.balance_sheet:
- yohoo_res.append({"content": "balance sheet:\n" + msft.balance_sheet.to_markdown() + "\n"})
- yohoo_res.append(
- {"content": "quarterly balance sheet:\n" + msft.quarterly_balance_sheet.to_markdown() + "\n"})
- if self._param.cash_flow_statement:
- yohoo_res.append({"content": "cash flow statement:\n" + msft.cashflow.to_markdown() + "\n"})
- yohoo_res.append(
- {"content": "quarterly cash flow statement:\n" + msft.quarterly_cashflow.to_markdown() + "\n"})
- if self._param.news:
- yohoo_res.append({"content": "news:\n" + pd.DataFrame(msft.news).to_markdown() + "\n"})
- except Exception:
- logging.exception("YahooFinance got exception")
-
- if not yohoo_res:
- return YahooFinance.be_output("")
-
- return pd.DataFrame(yohoo_res)
+#
+# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+import logging
+from abc import ABC
+import pandas as pd
+from agent.component.base import ComponentBase, ComponentParamBase
+import yfinance as yf
+
+
+class YahooFinanceParam(ComponentParamBase):
+ """
+ Define the YahooFinance component parameters.
+ """
+
+ def __init__(self):
+ super().__init__()
+ self.info = True
+ self.history = False
+ self.count = False
+ self.financials = False
+ self.income_stmt = False
+ self.balance_sheet = False
+ self.cash_flow_statement = False
+ self.news = True
+
+ def check(self):
+ self.check_boolean(self.info, "get all stock info")
+ self.check_boolean(self.history, "get historical market data")
+ self.check_boolean(self.count, "show share count")
+ self.check_boolean(self.financials, "show financials")
+ self.check_boolean(self.income_stmt, "income statement")
+ self.check_boolean(self.balance_sheet, "balance sheet")
+ self.check_boolean(self.cash_flow_statement, "cash flow statement")
+ self.check_boolean(self.news, "show news")
+
+
+class YahooFinance(ComponentBase, ABC):
+ component_name = "YahooFinance"
+
+ def _run(self, history, **kwargs):
+ ans = self.get_input()
+ ans = "".join(ans["content"]) if "content" in ans else ""
+ if not ans:
+ return YahooFinance.be_output("")
+
+ yohoo_res = []
+ try:
+ msft = yf.Ticker(ans)
+ if self._param.info:
+ yohoo_res.append({"content": "info:\n" + pd.Series(msft.info).to_markdown() + "\n"})
+ if self._param.history:
+ yohoo_res.append({"content": "history:\n" + msft.history().to_markdown() + "\n"})
+ if self._param.financials:
+ yohoo_res.append({"content": "calendar:\n" + pd.DataFrame(msft.calendar).to_markdown() + "\n"})
+ if self._param.balance_sheet:
+ yohoo_res.append({"content": "balance sheet:\n" + msft.balance_sheet.to_markdown() + "\n"})
+ yohoo_res.append(
+ {"content": "quarterly balance sheet:\n" + msft.quarterly_balance_sheet.to_markdown() + "\n"})
+ if self._param.cash_flow_statement:
+ yohoo_res.append({"content": "cash flow statement:\n" + msft.cashflow.to_markdown() + "\n"})
+ yohoo_res.append(
+ {"content": "quarterly cash flow statement:\n" + msft.quarterly_cashflow.to_markdown() + "\n"})
+ if self._param.news:
+ yohoo_res.append({"content": "news:\n" + pd.DataFrame(msft.news).to_markdown() + "\n"})
+ except Exception:
+ logging.exception("YahooFinance got exception")
+
+ if not yohoo_res:
+ return YahooFinance.be_output("")
+
+ return pd.DataFrame(yohoo_res)
diff --git a/agent/templates/investment_advisor.json b/agent/templates/investment_advisor.json
index 908c5dd8a..e920aadda 100644
--- a/agent/templates/investment_advisor.json
+++ b/agent/templates/investment_advisor.json
@@ -1,571 +1,571 @@
-{
- "id": 8,
- "title": "Intelligent investment advisor",
- "description": "An intelligent investment advisor that answers your financial questions using real-time domestic financial data.",
- "canvas_type": "chatbot",
- "dsl": {
- "answer": [],
- "components": {
- "begin": {
- "obj": {
- "component_name": "Begin",
- "params": {
- "prologue": "Hi there!"
- }
- },
- "downstream": [
- "Answer:NeatLandsWave"
- ],
- "upstream": []
- },
- "WenCai:TenParksOpen": {
- "obj": {
- "component_name": "WenCai",
- "params": {
- "query_type": "stock",
- "top_n": 5
- }
- },
- "downstream": [
- "Generate:RottenPianosUnite"
- ],
- "upstream": [
- "Answer:NeatLandsWave"
- ]
- },
- "AkShare:CalmHotelsKnow": {
- "obj": {
- "component_name": "AkShare",
- "params": {
- "top_n": 10
- }
- },
- "downstream": [
- "Generate:RottenPianosUnite"
- ],
- "upstream": [
- "KeywordExtract:BreezyGoatsRead"
- ]
- },
- "Answer:NeatLandsWave": {
- "obj": {
- "component_name": "Answer",
- "params": {}
- },
- "downstream": [
- "WenCai:TenParksOpen",
- "KeywordExtract:BreezyGoatsRead"
- ],
- "upstream": [
- "begin",
- "Generate:RottenPianosUnite"
- ]
- },
- "Generate:RottenPianosUnite": {
- "obj": {
- "component_name": "Generate",
- "params": {
- "cite": true,
- "frequency_penalty": 0.7,
- "llm_id": "deepseek-chat@DeepSeek",
- "max_tokens": 256,
- "message_history_window_size": 0,
- "parameters": [
- {
- "component_id": "WenCai:TenParksOpen",
- "id": "d35f331b-2787-4ae7-ab81-a7ea15970843",
- "key": "wencai_input"
- },
- {
- "component_id": "AkShare:CalmHotelsKnow",
- "id": "36c4db0b-c80d-4119-a2a6-05ed9f7efbc9",
- "key": "ak_input"
- }
- ],
- "presence_penalty": 0.4,
- "prompt": "Role: You are a professional financial counseling assistant.\n\nTask: Answer user's question based on content provided by Wencai and AkShare.\n\nNotice:\n- Output no more than 5 news items from AkShare if there's content provided by Wencai.\n- Items from AkShare MUST have a corresponding URL link.\n\n############\nContent provided by Wencai: \n{wencai_input}\n\n################\nContent provided by AkShare: \n{ak_input}",
- "temperature": 0.1,
- "top_p": 0.3
- }
- },
- "downstream": [
- "Answer:NeatLandsWave"
- ],
- "upstream": [
- "WenCai:TenParksOpen",
- "AkShare:CalmHotelsKnow"
- ]
- },
- "KeywordExtract:BreezyGoatsRead": {
- "obj": {
- "component_name": "KeywordExtract",
- "params": {
- "frequencyPenaltyEnabled": true,
- "frequency_penalty": 0.7,
- "llm_id": "deepseek-chat@DeepSeek",
- "maxTokensEnabled": true,
- "max_tokens": 256,
- "parameter": "Precise",
- "presencePenaltyEnabled": true,
- "presence_penalty": 0.4,
- "temperature": 0.1,
- "temperatureEnabled": true,
- "topPEnabled": true,
- "top_n": 2,
- "top_p": 0.3
- }
- },
- "downstream": [
- "AkShare:CalmHotelsKnow"
- ],
- "upstream": [
- "Answer:NeatLandsWave"
- ]
- }
- },
- "graph": {
- "nodes": [
- {
- "data": {
- "form": {
- "prologue": "Hi there!"
- },
- "label": "Begin",
- "name": "Opening"
- },
- "dragging": false,
- "height": 44,
- "id": "begin",
- "position": {
- "x": -521.8118264317484,
- "y": -27.999467037576665
- },
- "positionAbsolute": {
- "x": -521.8118264317484,
- "y": -27.999467037576665
- },
- "selected": false,
- "sourcePosition": "left",
- "targetPosition": "right",
- "type": "beginNode",
- "width": 100
- },
- {
- "data": {
- "form": {
- "query_type": "stock",
- "top_n": 5
- },
- "label": "WenCai",
- "name": "Wencai"
- },
- "dragging": false,
- "height": 44,
- "id": "WenCai:TenParksOpen",
- "position": {
- "x": -13.030801663267397,
- "y": -30.557141660610256
- },
- "positionAbsolute": {
- "x": -13.030801663267397,
- "y": -30.557141660610256
- },
- "selected": false,
- "sourcePosition": "right",
- "targetPosition": "left",
- "type": "ragNode",
- "width": 200
- },
- {
- "data": {
- "form": {
- "top_n": 10
- },
- "label": "AkShare",
- "name": "AKShare"
- },
- "dragging": false,
- "height": 44,
- "id": "AkShare:CalmHotelsKnow",
- "position": {
- "x": 267.17349571786156,
- "y": 100.01281266803943
- },
- "positionAbsolute": {
- "x": 267.17349571786156,
- "y": 100.01281266803943
- },
- "selected": false,
- "sourcePosition": "right",
- "targetPosition": "left",
- "type": "ragNode",
- "width": 200
- },
- {
- "data": {
- "form": {},
- "label": "Answer",
- "name": "Interact"
- },
- "dragging": false,
- "height": 44,
- "id": "Answer:NeatLandsWave",
- "position": {
- "x": -304.0612563145512,
- "y": -29.054278091837944
- },
- "positionAbsolute": {
- "x": -304.0612563145512,
- "y": -29.054278091837944
- },
- "selected": false,
- "sourcePosition": "right",
- "targetPosition": "left",
- "type": "logicNode",
- "width": 200
- },
- {
- "data": {
- "form": {
- "cite": true,
- "frequencyPenaltyEnabled": true,
- "frequency_penalty": 0.7,
- "llm_id": "deepseek-chat@DeepSeek",
- "maxTokensEnabled": true,
- "max_tokens": 256,
- "message_history_window_size": 0,
- "parameter": "Precise",
- "parameters": [
- {
- "component_id": "WenCai:TenParksOpen",
- "id": "d35f331b-2787-4ae7-ab81-a7ea15970843",
- "key": "wencai_input"
- },
- {
- "component_id": "AkShare:CalmHotelsKnow",
- "id": "36c4db0b-c80d-4119-a2a6-05ed9f7efbc9",
- "key": "ak_input"
- }
- ],
- "presencePenaltyEnabled": true,
- "presence_penalty": 0.4,
- "prompt": "Role: You are a professional financial counseling assistant.\n\nTask: Answer user's question based on content provided by Wencai and AkShare.\n\nNotice:\n- Output no more than 5 news items from AkShare if there's content provided by Wencai.\n- Items from AkShare MUST have a corresponding URL link.\n\n############\nContent provided by Wencai: \n{wencai_input}\n\n################\nContent provided by AkShare: \n{ak_input}",
- "temperature": 0.1,
- "temperatureEnabled": true,
- "topPEnabled": true,
- "top_p": 0.3
- },
- "label": "Generate",
- "name": "LLM"
- },
- "dragging": false,
- "height": 170,
- "id": "Generate:RottenPianosUnite",
- "position": {
- "x": -16.477598988611703,
- "y": -251.90091743639417
- },
- "positionAbsolute": {
- "x": -16.477598988611703,
- "y": -251.90091743639417
- },
- "selected": false,
- "sourcePosition": "right",
- "targetPosition": "left",
- "type": "generateNode",
- "width": 200
- },
- {
- "data": {
- "form": {
- "frequencyPenaltyEnabled": true,
- "frequency_penalty": 0.7,
- "llm_id": "deepseek-chat@DeepSeek",
- "maxTokensEnabled": true,
- "max_tokens": 256,
- "parameter": "Precise",
- "presencePenaltyEnabled": true,
- "presence_penalty": 0.4,
- "temperature": 0.1,
- "temperatureEnabled": true,
- "topPEnabled": true,
- "top_n": 2,
- "top_p": 0.3
- },
- "label": "KeywordExtract",
- "name": "Keywords"
- },
- "dragging": false,
- "height": 86,
- "id": "KeywordExtract:BreezyGoatsRead",
- "position": {
- "x": -17.690374759999543,
- "y": 80.39964392387697
- },
- "positionAbsolute": {
- "x": -17.690374759999543,
- "y": 80.39964392387697
- },
- "selected": false,
- "sourcePosition": "right",
- "targetPosition": "left",
- "type": "keywordNode",
- "width": 200
- },
- {
- "data": {
- "form": {
- "text": "Receives the user's financial inquiries and displays the large model's response to financial questions."
- },
- "label": "Note",
- "name": "N: Interact"
- },
- "dragging": false,
- "height": 162,
- "id": "Note:FuzzyPoetsLearn",
- "position": {
- "x": -296.5982116419186,
- "y": 38.77567426067935
- },
- "positionAbsolute": {
- "x": -296.5982116419186,
- "y": 38.77567426067935
- },
- "resizing": false,
- "selected": false,
- "sourcePosition": "right",
- "style": {
- "height": 162,
- "width": 214
- },
- "targetPosition": "left",
- "type": "noteNode",
- "width": 214,
- "dragHandle": ".note-drag-handle"
- },
- {
- "data": {
- "form": {
- "text": "Extracts keywords based on the user's financial questions for better retrieval."
- },
- "label": "Note",
- "name": "N: Keywords"
- },
- "dragging": false,
- "height": 155,
- "id": "Note:FlatBagsRun",
- "position": {
- "x": -14.82895160277127,
- "y": 186.52508153680787
- },
- "positionAbsolute": {
- "x": -14.82895160277127,
- "y": 186.52508153680787
- },
- "resizing": false,
- "selected": false,
- "sourcePosition": "right",
- "style": {
- "height": 155,
- "width": 213
- },
- "targetPosition": "left",
- "type": "noteNode",
- "width": 213,
- "dragHandle": ".note-drag-handle"
- },
- {
- "data": {
- "form": {
- "text": "Searches on akshare for the latest news about economics based on the keywords and returns the results."
- },
- "label": "Note",
- "name": "N: AKShare"
- },
- "dragging": false,
- "height": 128,
- "id": "Note:WarmClothsSort",
- "position": {
- "x": 573.7653319987893,
- "y": 102.64512355369035
- },
- "positionAbsolute": {
- "x": 573.7653319987893,
- "y": 102.64512355369035
- },
- "resizing": false,
- "selected": false,
- "sourcePosition": "right",
- "style": {
- "height": 128,
- "width": 283
- },
- "targetPosition": "left",
- "type": "noteNode",
- "width": 283,
- "dragHandle": ".note-drag-handle"
- },
- {
- "data": {
- "form": {
- "text": "Searches by Wencai to select stocks that satisfy user mentioned conditions."
- },
- "label": "Note",
- "name": "N: Wencai"
- },
- "dragging": false,
- "height": 128,
- "id": "Note:TiredReadersWash",
- "position": {
- "x": 571.4274792499875,
- "y": -37.07105560150117
- },
- "positionAbsolute": {
- "x": 571.4274792499875,
- "y": -37.07105560150117
- },
- "resizing": false,
- "selected": false,
- "sourcePosition": "right",
- "style": {
- "height": 128,
- "width": 285
- },
- "targetPosition": "left",
- "type": "noteNode",
- "width": 285,
- "dragHandle": ".note-drag-handle"
- },
- {
- "data": {
- "form": {
- "text": "The large model answers the user's medical health questions based on the searched and retrieved content."
- },
- "label": "Note",
- "name": "N: LLM"
- },
- "dragging": false,
- "height": 163,
- "id": "Note:TameBoatsType",
- "position": {
- "x": -7.849538042569293,
- "y": -427.90526378748035
- },
- "positionAbsolute": {
- "x": -7.849538042569293,
- "y": -427.90526378748035
- },
- "resizing": false,
- "selected": false,
- "sourcePosition": "right",
- "style": {
- "height": 163,
- "width": 212
- },
- "targetPosition": "left",
- "type": "noteNode",
- "width": 212,
- "dragHandle": ".note-drag-handle"
- }
- ],
- "edges": [
- {
- "id": "reactflow__edge-begin-Answer:NeatLandsWavec",
- "markerEnd": "logo",
- "source": "begin",
- "sourceHandle": null,
- "style": {
- "stroke": "rgb(202 197 245)",
- "strokeWidth": 2
- },
- "target": "Answer:NeatLandsWave",
- "targetHandle": "c",
- "type": "buttonEdge"
- },
- {
- "id": "reactflow__edge-Answer:NeatLandsWaveb-WenCai:TenParksOpenc",
- "markerEnd": "logo",
- "source": "Answer:NeatLandsWave",
- "sourceHandle": "b",
- "style": {
- "stroke": "rgb(202 197 245)",
- "strokeWidth": 2
- },
- "target": "WenCai:TenParksOpen",
- "targetHandle": "c",
- "type": "buttonEdge"
- },
- {
- "id": "reactflow__edge-KeywordExtract:BreezyGoatsReadb-AkShare:CalmHotelsKnowc",
- "markerEnd": "logo",
- "source": "KeywordExtract:BreezyGoatsRead",
- "sourceHandle": "b",
- "style": {
- "stroke": "rgb(202 197 245)",
- "strokeWidth": 2
- },
- "target": "AkShare:CalmHotelsKnow",
- "targetHandle": "c",
- "type": "buttonEdge"
- },
- {
- "id": "reactflow__edge-WenCai:TenParksOpenb-Generate:RottenPianosUniteb",
- "markerEnd": "logo",
- "source": "WenCai:TenParksOpen",
- "sourceHandle": "b",
- "style": {
- "stroke": "rgb(202 197 245)",
- "strokeWidth": 2
- },
- "target": "Generate:RottenPianosUnite",
- "targetHandle": "b",
- "type": "buttonEdge"
- },
- {
- "id": "reactflow__edge-AkShare:CalmHotelsKnowb-Generate:RottenPianosUniteb",
- "markerEnd": "logo",
- "source": "AkShare:CalmHotelsKnow",
- "sourceHandle": "b",
- "style": {
- "stroke": "rgb(202 197 245)",
- "strokeWidth": 2
- },
- "target": "Generate:RottenPianosUnite",
- "targetHandle": "b",
- "type": "buttonEdge"
- },
- {
- "id": "reactflow__edge-Generate:RottenPianosUnitec-Answer:NeatLandsWavec",
- "markerEnd": "logo",
- "source": "Generate:RottenPianosUnite",
- "sourceHandle": "c",
- "style": {
- "stroke": "rgb(202 197 245)",
- "strokeWidth": 2
- },
- "target": "Answer:NeatLandsWave",
- "targetHandle": "c",
- "type": "buttonEdge"
- },
- {
- "id": "reactflow__edge-Answer:NeatLandsWaveb-KeywordExtract:BreezyGoatsReadc",
- "markerEnd": "logo",
- "source": "Answer:NeatLandsWave",
- "sourceHandle": "b",
- "style": {
- "stroke": "rgb(202 197 245)",
- "strokeWidth": 2
- },
- "target": "KeywordExtract:BreezyGoatsRead",
- "targetHandle": "c",
- "type": "buttonEdge"
- }
- ]
- },
- "history": [],
- "messages": [],
- "path": [],
- "reference": []
- },
- "avatar": ""
-}
+{
+ "id": 8,
+ "title": "Intelligent investment advisor",
+ "description": "An intelligent investment advisor that answers your financial questions using real-time domestic financial data.",
+ "canvas_type": "chatbot",
+ "dsl": {
+ "answer": [],
+ "components": {
+ "begin": {
+ "obj": {
+ "component_name": "Begin",
+ "params": {
+ "prologue": "Hi there!"
+ }
+ },
+ "downstream": [
+ "Answer:NeatLandsWave"
+ ],
+ "upstream": []
+ },
+ "WenCai:TenParksOpen": {
+ "obj": {
+ "component_name": "WenCai",
+ "params": {
+ "query_type": "stock",
+ "top_n": 5
+ }
+ },
+ "downstream": [
+ "Generate:RottenPianosUnite"
+ ],
+ "upstream": [
+ "Answer:NeatLandsWave"
+ ]
+ },
+ "AkShare:CalmHotelsKnow": {
+ "obj": {
+ "component_name": "AkShare",
+ "params": {
+ "top_n": 10
+ }
+ },
+ "downstream": [
+ "Generate:RottenPianosUnite"
+ ],
+ "upstream": [
+ "KeywordExtract:BreezyGoatsRead"
+ ]
+ },
+ "Answer:NeatLandsWave": {
+ "obj": {
+ "component_name": "Answer",
+ "params": {}
+ },
+ "downstream": [
+ "WenCai:TenParksOpen",
+ "KeywordExtract:BreezyGoatsRead"
+ ],
+ "upstream": [
+ "begin",
+ "Generate:RottenPianosUnite"
+ ]
+ },
+ "Generate:RottenPianosUnite": {
+ "obj": {
+ "component_name": "Generate",
+ "params": {
+ "cite": true,
+ "frequency_penalty": 0.7,
+ "llm_id": "deepseek-chat@DeepSeek",
+ "max_tokens": 256,
+ "message_history_window_size": 0,
+ "parameters": [
+ {
+ "component_id": "WenCai:TenParksOpen",
+ "id": "d35f331b-2787-4ae7-ab81-a7ea15970843",
+ "key": "wencai_input"
+ },
+ {
+ "component_id": "AkShare:CalmHotelsKnow",
+ "id": "36c4db0b-c80d-4119-a2a6-05ed9f7efbc9",
+ "key": "ak_input"
+ }
+ ],
+ "presence_penalty": 0.4,
+ "prompt": "Role: You are a professional financial counseling assistant.\n\nTask: Answer user's question based on content provided by Wencai and AkShare.\n\nNotice:\n- Output no more than 5 news items from AkShare if there's content provided by Wencai.\n- Items from AkShare MUST have a corresponding URL link.\n\n############\nContent provided by Wencai: \n{wencai_input}\n\n################\nContent provided by AkShare: \n{ak_input}",
+ "temperature": 0.1,
+ "top_p": 0.3
+ }
+ },
+ "downstream": [
+ "Answer:NeatLandsWave"
+ ],
+ "upstream": [
+ "WenCai:TenParksOpen",
+ "AkShare:CalmHotelsKnow"
+ ]
+ },
+ "KeywordExtract:BreezyGoatsRead": {
+ "obj": {
+ "component_name": "KeywordExtract",
+ "params": {
+ "frequencyPenaltyEnabled": true,
+ "frequency_penalty": 0.7,
+ "llm_id": "deepseek-chat@DeepSeek",
+ "maxTokensEnabled": true,
+ "max_tokens": 256,
+ "parameter": "Precise",
+ "presencePenaltyEnabled": true,
+ "presence_penalty": 0.4,
+ "temperature": 0.1,
+ "temperatureEnabled": true,
+ "topPEnabled": true,
+ "top_n": 2,
+ "top_p": 0.3
+ }
+ },
+ "downstream": [
+ "AkShare:CalmHotelsKnow"
+ ],
+ "upstream": [
+ "Answer:NeatLandsWave"
+ ]
+ }
+ },
+ "graph": {
+ "nodes": [
+ {
+ "data": {
+ "form": {
+ "prologue": "Hi there!"
+ },
+ "label": "Begin",
+ "name": "Opening"
+ },
+ "dragging": false,
+ "height": 44,
+ "id": "begin",
+ "position": {
+ "x": -521.8118264317484,
+ "y": -27.999467037576665
+ },
+ "positionAbsolute": {
+ "x": -521.8118264317484,
+ "y": -27.999467037576665
+ },
+ "selected": false,
+ "sourcePosition": "left",
+ "targetPosition": "right",
+ "type": "beginNode",
+ "width": 100
+ },
+ {
+ "data": {
+ "form": {
+ "query_type": "stock",
+ "top_n": 5
+ },
+ "label": "WenCai",
+ "name": "Wencai"
+ },
+ "dragging": false,
+ "height": 44,
+ "id": "WenCai:TenParksOpen",
+ "position": {
+ "x": -13.030801663267397,
+ "y": -30.557141660610256
+ },
+ "positionAbsolute": {
+ "x": -13.030801663267397,
+ "y": -30.557141660610256
+ },
+ "selected": false,
+ "sourcePosition": "right",
+ "targetPosition": "left",
+ "type": "ragNode",
+ "width": 200
+ },
+ {
+ "data": {
+ "form": {
+ "top_n": 10
+ },
+ "label": "AkShare",
+ "name": "AKShare"
+ },
+ "dragging": false,
+ "height": 44,
+ "id": "AkShare:CalmHotelsKnow",
+ "position": {
+ "x": 267.17349571786156,
+ "y": 100.01281266803943
+ },
+ "positionAbsolute": {
+ "x": 267.17349571786156,
+ "y": 100.01281266803943
+ },
+ "selected": false,
+ "sourcePosition": "right",
+ "targetPosition": "left",
+ "type": "ragNode",
+ "width": 200
+ },
+ {
+ "data": {
+ "form": {},
+ "label": "Answer",
+ "name": "Interact"
+ },
+ "dragging": false,
+ "height": 44,
+ "id": "Answer:NeatLandsWave",
+ "position": {
+ "x": -304.0612563145512,
+ "y": -29.054278091837944
+ },
+ "positionAbsolute": {
+ "x": -304.0612563145512,
+ "y": -29.054278091837944
+ },
+ "selected": false,
+ "sourcePosition": "right",
+ "targetPosition": "left",
+ "type": "logicNode",
+ "width": 200
+ },
+ {
+ "data": {
+ "form": {
+ "cite": true,
+ "frequencyPenaltyEnabled": true,
+ "frequency_penalty": 0.7,
+ "llm_id": "deepseek-chat@DeepSeek",
+ "maxTokensEnabled": true,
+ "max_tokens": 256,
+ "message_history_window_size": 0,
+ "parameter": "Precise",
+ "parameters": [
+ {
+ "component_id": "WenCai:TenParksOpen",
+ "id": "d35f331b-2787-4ae7-ab81-a7ea15970843",
+ "key": "wencai_input"
+ },
+ {
+ "component_id": "AkShare:CalmHotelsKnow",
+ "id": "36c4db0b-c80d-4119-a2a6-05ed9f7efbc9",
+ "key": "ak_input"
+ }
+ ],
+ "presencePenaltyEnabled": true,
+ "presence_penalty": 0.4,
+ "prompt": "Role: You are a professional financial counseling assistant.\n\nTask: Answer user's question based on content provided by Wencai and AkShare.\n\nNotice:\n- Output no more than 5 news items from AkShare if there's content provided by Wencai.\n- Items from AkShare MUST have a corresponding URL link.\n\n############\nContent provided by Wencai: \n{wencai_input}\n\n################\nContent provided by AkShare: \n{ak_input}",
+ "temperature": 0.1,
+ "temperatureEnabled": true,
+ "topPEnabled": true,
+ "top_p": 0.3
+ },
+ "label": "Generate",
+ "name": "LLM"
+ },
+ "dragging": false,
+ "height": 170,
+ "id": "Generate:RottenPianosUnite",
+ "position": {
+ "x": -16.477598988611703,
+ "y": -251.90091743639417
+ },
+ "positionAbsolute": {
+ "x": -16.477598988611703,
+ "y": -251.90091743639417
+ },
+ "selected": false,
+ "sourcePosition": "right",
+ "targetPosition": "left",
+ "type": "generateNode",
+ "width": 200
+ },
+ {
+ "data": {
+ "form": {
+ "frequencyPenaltyEnabled": true,
+ "frequency_penalty": 0.7,
+ "llm_id": "deepseek-chat@DeepSeek",
+ "maxTokensEnabled": true,
+ "max_tokens": 256,
+ "parameter": "Precise",
+ "presencePenaltyEnabled": true,
+ "presence_penalty": 0.4,
+ "temperature": 0.1,
+ "temperatureEnabled": true,
+ "topPEnabled": true,
+ "top_n": 2,
+ "top_p": 0.3
+ },
+ "label": "KeywordExtract",
+ "name": "Keywords"
+ },
+ "dragging": false,
+ "height": 86,
+ "id": "KeywordExtract:BreezyGoatsRead",
+ "position": {
+ "x": -17.690374759999543,
+ "y": 80.39964392387697
+ },
+ "positionAbsolute": {
+ "x": -17.690374759999543,
+ "y": 80.39964392387697
+ },
+ "selected": false,
+ "sourcePosition": "right",
+ "targetPosition": "left",
+ "type": "keywordNode",
+ "width": 200
+ },
+ {
+ "data": {
+ "form": {
+ "text": "Receives the user's financial inquiries and displays the large model's response to financial questions."
+ },
+ "label": "Note",
+ "name": "N: Interact"
+ },
+ "dragging": false,
+ "height": 162,
+ "id": "Note:FuzzyPoetsLearn",
+ "position": {
+ "x": -296.5982116419186,
+ "y": 38.77567426067935
+ },
+ "positionAbsolute": {
+ "x": -296.5982116419186,
+ "y": 38.77567426067935
+ },
+ "resizing": false,
+ "selected": false,
+ "sourcePosition": "right",
+ "style": {
+ "height": 162,
+ "width": 214
+ },
+ "targetPosition": "left",
+ "type": "noteNode",
+ "width": 214,
+ "dragHandle": ".note-drag-handle"
+ },
+ {
+ "data": {
+ "form": {
+ "text": "Extracts keywords based on the user's financial questions for better retrieval."
+ },
+ "label": "Note",
+ "name": "N: Keywords"
+ },
+ "dragging": false,
+ "height": 155,
+ "id": "Note:FlatBagsRun",
+ "position": {
+ "x": -14.82895160277127,
+ "y": 186.52508153680787
+ },
+ "positionAbsolute": {
+ "x": -14.82895160277127,
+ "y": 186.52508153680787
+ },
+ "resizing": false,
+ "selected": false,
+ "sourcePosition": "right",
+ "style": {
+ "height": 155,
+ "width": 213
+ },
+ "targetPosition": "left",
+ "type": "noteNode",
+ "width": 213,
+ "dragHandle": ".note-drag-handle"
+ },
+ {
+ "data": {
+ "form": {
+ "text": "Searches on akshare for the latest news about economics based on the keywords and returns the results."
+ },
+ "label": "Note",
+ "name": "N: AKShare"
+ },
+ "dragging": false,
+ "height": 128,
+ "id": "Note:WarmClothsSort",
+ "position": {
+ "x": 573.7653319987893,
+ "y": 102.64512355369035
+ },
+ "positionAbsolute": {
+ "x": 573.7653319987893,
+ "y": 102.64512355369035
+ },
+ "resizing": false,
+ "selected": false,
+ "sourcePosition": "right",
+ "style": {
+ "height": 128,
+ "width": 283
+ },
+ "targetPosition": "left",
+ "type": "noteNode",
+ "width": 283,
+ "dragHandle": ".note-drag-handle"
+ },
+ {
+ "data": {
+ "form": {
+ "text": "Searches by Wencai to select stocks that satisfy user mentioned conditions."
+ },
+ "label": "Note",
+ "name": "N: Wencai"
+ },
+ "dragging": false,
+ "height": 128,
+ "id": "Note:TiredReadersWash",
+ "position": {
+ "x": 571.4274792499875,
+ "y": -37.07105560150117
+ },
+ "positionAbsolute": {
+ "x": 571.4274792499875,
+ "y": -37.07105560150117
+ },
+ "resizing": false,
+ "selected": false,
+ "sourcePosition": "right",
+ "style": {
+ "height": 128,
+ "width": 285
+ },
+ "targetPosition": "left",
+ "type": "noteNode",
+ "width": 285,
+ "dragHandle": ".note-drag-handle"
+ },
+ {
+ "data": {
+ "form": {
+ "text": "The large model answers the user's medical health questions based on the searched and retrieved content."
+ },
+ "label": "Note",
+ "name": "N: LLM"
+ },
+ "dragging": false,
+ "height": 163,
+ "id": "Note:TameBoatsType",
+ "position": {
+ "x": -7.849538042569293,
+ "y": -427.90526378748035
+ },
+ "positionAbsolute": {
+ "x": -7.849538042569293,
+ "y": -427.90526378748035
+ },
+ "resizing": false,
+ "selected": false,
+ "sourcePosition": "right",
+ "style": {
+ "height": 163,
+ "width": 212
+ },
+ "targetPosition": "left",
+ "type": "noteNode",
+ "width": 212,
+ "dragHandle": ".note-drag-handle"
+ }
+ ],
+ "edges": [
+ {
+ "id": "reactflow__edge-begin-Answer:NeatLandsWavec",
+ "markerEnd": "logo",
+ "source": "begin",
+ "sourceHandle": null,
+ "style": {
+ "stroke": "rgb(202 197 245)",
+ "strokeWidth": 2
+ },
+ "target": "Answer:NeatLandsWave",
+ "targetHandle": "c",
+ "type": "buttonEdge"
+ },
+ {
+ "id": "reactflow__edge-Answer:NeatLandsWaveb-WenCai:TenParksOpenc",
+ "markerEnd": "logo",
+ "source": "Answer:NeatLandsWave",
+ "sourceHandle": "b",
+ "style": {
+ "stroke": "rgb(202 197 245)",
+ "strokeWidth": 2
+ },
+ "target": "WenCai:TenParksOpen",
+ "targetHandle": "c",
+ "type": "buttonEdge"
+ },
+ {
+ "id": "reactflow__edge-KeywordExtract:BreezyGoatsReadb-AkShare:CalmHotelsKnowc",
+ "markerEnd": "logo",
+ "source": "KeywordExtract:BreezyGoatsRead",
+ "sourceHandle": "b",
+ "style": {
+ "stroke": "rgb(202 197 245)",
+ "strokeWidth": 2
+ },
+ "target": "AkShare:CalmHotelsKnow",
+ "targetHandle": "c",
+ "type": "buttonEdge"
+ },
+ {
+ "id": "reactflow__edge-WenCai:TenParksOpenb-Generate:RottenPianosUniteb",
+ "markerEnd": "logo",
+ "source": "WenCai:TenParksOpen",
+ "sourceHandle": "b",
+ "style": {
+ "stroke": "rgb(202 197 245)",
+ "strokeWidth": 2
+ },
+ "target": "Generate:RottenPianosUnite",
+ "targetHandle": "b",
+ "type": "buttonEdge"
+ },
+ {
+ "id": "reactflow__edge-AkShare:CalmHotelsKnowb-Generate:RottenPianosUniteb",
+ "markerEnd": "logo",
+ "source": "AkShare:CalmHotelsKnow",
+ "sourceHandle": "b",
+ "style": {
+ "stroke": "rgb(202 197 245)",
+ "strokeWidth": 2
+ },
+ "target": "Generate:RottenPianosUnite",
+ "targetHandle": "b",
+ "type": "buttonEdge"
+ },
+ {
+ "id": "reactflow__edge-Generate:RottenPianosUnitec-Answer:NeatLandsWavec",
+ "markerEnd": "logo",
+ "source": "Generate:RottenPianosUnite",
+ "sourceHandle": "c",
+ "style": {
+ "stroke": "rgb(202 197 245)",
+ "strokeWidth": 2
+ },
+ "target": "Answer:NeatLandsWave",
+ "targetHandle": "c",
+ "type": "buttonEdge"
+ },
+ {
+ "id": "reactflow__edge-Answer:NeatLandsWaveb-KeywordExtract:BreezyGoatsReadc",
+ "markerEnd": "logo",
+ "source": "Answer:NeatLandsWave",
+ "sourceHandle": "b",
+ "style": {
+ "stroke": "rgb(202 197 245)",
+ "strokeWidth": 2
+ },
+ "target": "KeywordExtract:BreezyGoatsRead",
+ "targetHandle": "c",
+ "type": "buttonEdge"
+ }
+ ]
+ },
+ "history": [],
+ "messages": [],
+ "path": [],
+ "reference": []
+ },
+ "avatar": ""
+}
diff --git a/agent/templates/text2sql.json b/agent/templates/text2sql.json
index cf6dd5307..c5a62d192 100644
--- a/agent/templates/text2sql.json
+++ b/agent/templates/text2sql.json
@@ -1,585 +1,585 @@
-{
- "id": 5,
- "title": "Text To SQL",
- "description": "An agent that converts user queries into SQL statements. You must prepare three knowledge bases: 1: DDL for your database; 2: Examples of user queries converted to SQL statements; 3: A comprehensive description of your database, including but not limited to tables and records.",
- "canvas_type": "chatbot",
- "dsl": {
- "answer": [],
- "components": {
- "begin": {
- "obj": {
- "component_name": "Begin",
- "params": {}
- },
- "downstream": [
- "Answer:SocialAdsWonder"
- ],
- "upstream": []
- },
- "Answer:SocialAdsWonder": {
- "obj": {
- "component_name": "Answer",
- "params": {}
- },
- "downstream": [
- "Retrieval:TrueCornersJam",
- "Retrieval:EasyDryersShop",
- "Retrieval:LazyChefsWatch"
- ],
- "upstream": [
- "begin",
- "Generate:RareSymbolsGrin"
- ]
- },
- "Retrieval:TrueCornersJam": {
- "obj": {
- "component_name": "Retrieval",
- "params": {
- "empty_response": "Nothing found in DDL!",
- "kb_ids": [],
- "keywords_similarity_weight": 0.3,
- "similarity_threshold": 0.02,
- "top_n": 8
- }
- },
- "downstream": [
- "Generate:RareSymbolsGrin"
- ],
- "upstream": [
- "Answer:SocialAdsWonder"
- ]
- },
- "Retrieval:EasyDryersShop": {
- "obj": {
- "component_name": "Retrieval",
- "params": {
- "empty_response": "Nothing found in Q-SQL!",
- "kb_ids": [],
- "keywords_similarity_weight": 0.3,
- "similarity_threshold": 0.2,
- "top_n": 8
- }
- },
- "downstream": [
- "Generate:RareSymbolsGrin"
- ],
- "upstream": [
- "Answer:SocialAdsWonder"
- ]
- },
- "Retrieval:LazyChefsWatch": {
- "obj": {
- "component_name": "Retrieval",
- "params": {
- "empty_response": "Nothing found in DB-Description!",
- "kb_ids": [],
- "keywords_similarity_weight": 0.3,
- "similarity_threshold": 0.2,
- "top_n": 8
- }
- },
- "downstream": [
- "Generate:RareSymbolsGrin"
- ],
- "upstream": [
- "Answer:SocialAdsWonder"
- ]
- },
- "Generate:RareSymbolsGrin": {
- "obj": {
- "component_name": "Generate",
- "params": {
- "cite": true,
- "frequency_penalty": 0.7,
- "llm_id": "deepseek-chat@DeepSeek",
- "max_tokens": 256,
- "message_history_window_size": 12,
- "parameters": [
- {
- "component_id": "Retrieval:TrueCornersJam",
- "id": "78644673-9236-4605-8110-59705fc38784",
- "key": "ddl_input"
- },
- {
- "component_id": "Retrieval:LazyChefsWatch",
- "id": "afbf91ce-6f58-4573-b02d-9a4973f124f4",
- "key": "db_input"
- },
- {
- "component_id": "Retrieval:EasyDryersShop",
- "id": "ee2b84f4-1cf5-43be-80e6-60bfaea3d834",
- "key": "sql_input"
- }
- ],
- "presence_penalty": 0.4,
- "prompt": "##The user provides a question and you provide SQL. You will only respond with SQL code and not with any explanations.\n\n##Respond with only SQL code. Do not answer with any explanations -- just the code.\n\n##You may use the following DDL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {ddl_input}.\n\n##You may use the following documentation as a reference for what tables might be available. Use responses to past questions also to guide you: {db_input}.\n\n##You may use the following SQL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {sql_input}.",
- "temperature": 0.1,
- "top_p": 0.3
- }
- },
- "downstream": [
- "Answer:SocialAdsWonder"
- ],
- "upstream": [
- "Retrieval:TrueCornersJam",
- "Retrieval:EasyDryersShop",
- "Retrieval:LazyChefsWatch"
- ]
- }
- },
- "embed_id": "",
- "graph": {
- "nodes": [
- {
- "data": {
- "label": "Begin",
- "name": "begin"
- },
- "dragging": false,
- "height": 44,
- "id": "begin",
- "position": {
- "x": -520.486587527275,
- "y": 117.87988995940702
- },
- "positionAbsolute": {
- "x": -520.486587527275,
- "y": 117.87988995940702
- },
- "selected": false,
- "sourcePosition": "left",
- "targetPosition": "right",
- "type": "beginNode",
- "width": 100
- },
- {
- "data": {
- "form": {},
- "label": "Answer",
- "name": "interface"
- },
- "dragging": false,
- "height": 44,
- "id": "Answer:SocialAdsWonder",
- "position": {
- "x": -284.9289105495367,
- "y": 119.9282206409824
- },
- "positionAbsolute": {
- "x": -284.9289105495367,
- "y": 119.9282206409824
- },
- "selected": false,
- "sourcePosition": "right",
- "targetPosition": "left",
- "type": "logicNode",
- "width": 200
- },
- {
- "data": {
- "form": {
- "empty_response": "Nothing found in DDL!",
- "kb_ids": [],
- "keywords_similarity_weight": 0.3,
- "similarity_threshold": 0.02,
- "top_n": 8
- },
- "label": "Retrieval",
- "name": "DDL"
- },
- "dragging": false,
- "height": 44,
- "id": "Retrieval:TrueCornersJam",
- "position": {
- "x": 119.61927071085717,
- "y": -40.184181873335746
- },
- "positionAbsolute": {
- "x": 119.61927071085717,
- "y": -40.184181873335746
- },
- "selected": false,
- "sourcePosition": "right",
- "targetPosition": "left",
- "type": "retrievalNode",
- "width": 200
- },
- {
- "data": {
- "form": {
- "empty_response": "Nothing found in Q-SQL!",
- "kb_ids": [],
- "keywords_similarity_weight": 0.3,
- "similarity_threshold": 0.2,
- "top_n": 8
- },
- "label": "Retrieval",
- "name": "Q->SQL"
- },
- "dragging": false,
- "height": 44,
- "id": "Retrieval:EasyDryersShop",
- "position": {
- "x": 81.2024576603057,
- "y": 94.16303322180948
- },
- "positionAbsolute": {
- "x": 81.2024576603057,
- "y": 94.16303322180948
- },
- "selected": false,
- "sourcePosition": "right",
- "targetPosition": "left",
- "type": "retrievalNode",
- "width": 200
- },
- {
- "data": {
- "form": {
- "empty_response": "Nothing found in DB-Description!",
- "kb_ids": [],
- "keywords_similarity_weight": 0.3,
- "similarity_threshold": 0.2,
- "top_n": 8
- },
- "label": "Retrieval",
- "name": "DB Description"
- },
- "dragging": false,
- "height": 44,
- "id": "Retrieval:LazyChefsWatch",
- "position": {
- "x": 51.228157704293324,
- "y": 252.77721891325103
- },
- "positionAbsolute": {
- "x": 51.228157704293324,
- "y": 252.77721891325103
- },
- "selected": false,
- "sourcePosition": "right",
- "targetPosition": "left",
- "type": "retrievalNode",
- "width": 200
- },
- {
- "data": {
- "form": {
- "cite": true,
- "frequencyPenaltyEnabled": true,
- "frequency_penalty": 0.7,
- "llm_id": "deepseek-chat@DeepSeek",
- "maxTokensEnabled": true,
- "max_tokens": 256,
- "message_history_window_size": 12,
- "parameter": "Precise",
- "parameters": [
- {
- "component_id": "Retrieval:TrueCornersJam",
- "id": "78644673-9236-4605-8110-59705fc38784",
- "key": "ddl_input"
- },
- {
- "component_id": "Retrieval:LazyChefsWatch",
- "id": "afbf91ce-6f58-4573-b02d-9a4973f124f4",
- "key": "db_input"
- },
- {
- "component_id": "Retrieval:EasyDryersShop",
- "id": "ee2b84f4-1cf5-43be-80e6-60bfaea3d834",
- "key": "sql_input"
- }
- ],
- "presencePenaltyEnabled": true,
- "presence_penalty": 0.4,
- "prompt": "##The user provides a question and you provide SQL. You will only respond with SQL code and not with any explanations.\n\n##Respond with only SQL code. Do not answer with any explanations -- just the code.\n\n##You may use the following DDL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {ddl_input}.\n\n##You may use the following documentation as a reference for what tables might be available. Use responses to past questions also to guide you: {db_input}.\n\n##You may use the following SQL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {sql_input}.",
- "temperature": 0.1,
- "temperatureEnabled": true,
- "topPEnabled": true,
- "top_p": 0.3
- },
- "label": "Generate",
- "name": "LLM"
- },
- "dragging": false,
- "height": 212,
- "id": "Generate:RareSymbolsGrin",
- "position": {
- "x": 6.6098512156750076,
- "y": 405.0105548561454
- },
- "positionAbsolute": {
- "x": 6.6098512156750076,
- "y": 405.0105548561454
- },
- "selected": false,
- "sourcePosition": "right",
- "targetPosition": "left",
- "type": "generateNode",
- "width": 200
- },
- {
- "data": {
- "form": {
- "text": "Receives a sentence that the user wants to convert into SQL and displays the result of the large model's SQL conversion."
- },
- "label": "Note",
- "name": "N: Interface"
- },
- "dragging": false,
- "height": 132,
- "id": "Note:GentleRabbitsWonder",
- "position": {
- "x": -287.3066094433631,
- "y": -30.808189185380513
- },
- "positionAbsolute": {
- "x": -287.3066094433631,
- "y": -30.808189185380513
- },
- "resizing": false,
- "selected": false,
- "sourcePosition": "right",
- "style": {
- "height": 132,
- "width": 324
- },
- "targetPosition": "left",
- "type": "noteNode",
- "width": 324,
- "dragHandle": ".note-drag-handle"
- },
- {
- "data": {
- "form": {
- "text": "The large model learns which tables may be available based on the responses from three knowledge bases and converts the user's input into SQL statements."
- },
- "label": "Note",
- "name": "N: LLM"
- },
- "dragging": false,
- "height": 147,
- "id": "Note:SixCitiesJoke",
- "position": {
- "x": 5.12121582244032,
- "y": 637.6539219843564
- },
- "positionAbsolute": {
- "x": 5.12121582244032,
- "y": 637.6539219843564
- },
- "resizing": false,
- "selected": false,
- "sourcePosition": "right",
- "style": {
- "height": 147,
- "width": 326
- },
- "targetPosition": "left",
- "type": "noteNode",
- "width": 326,
- "dragHandle": ".note-drag-handle"
- },
- {
- "data": {
- "form": {
- "text": "Searches for description about meanings of tables and fields."
- },
- "label": "Note",
- "name": "N: DB description"
- },
- "dragging": false,
- "height": 128,
- "id": "Note:FamousCarpetsTaste",
- "position": {
- "x": 399.9267065852242,
- "y": 250.0329701879931
- },
- "positionAbsolute": {
- "x": 399.9267065852242,
- "y": 250.0329701879931
- },
- "selected": false,
- "sourcePosition": "right",
- "targetPosition": "left",
- "type": "noteNode",
- "width": 269,
- "dragHandle": ".note-drag-handle"
- },
- {
- "data": {
- "form": {
- "text": "Searches for samples about question to SQL.\nPlease check this dataset: https://huggingface.co/datasets/InfiniFlow/text2sql"
- },
- "label": "Note",
- "name": "N: Q->SQL"
- },
- "dragging": false,
- "height": 130,
- "id": "Note:PoliteBeesArrive",
- "position": {
- "x": 489.0393427986917,
- "y": 96.58232093146341
- },
- "positionAbsolute": {
- "x": 489.0393427986917,
- "y": 96.58232093146341
- },
- "resizing": false,
- "selected": false,
- "sourcePosition": "right",
- "style": {
- "height": 130,
- "width": 451
- },
- "targetPosition": "left",
- "type": "noteNode",
- "width": 451,
- "dragHandle": ".note-drag-handle"
- },
- {
- "data": {
- "form": {
- "text": "DDL(Data Definition Language).\n\nSearches for relevant database creation statements.\n\nIt should bind with a KB to which DDL is dumped in.\nYou could use 'General' as parsing method and ';' as delimiter."
- },
- "label": "Note",
- "name": "N: DDL"
- },
- "dragging": false,
- "height": 258,
- "id": "Note:SmartWingsDouble",
- "position": {
- "x": 404.1930553966363,
- "y": -208.84980249039137
- },
- "positionAbsolute": {
- "x": 404.1930553966363,
- "y": -208.84980249039137
- },
- "resizing": false,
- "selected": false,
- "sourcePosition": "right",
- "style": {
- "height": 258,
- "width": 283
- },
- "targetPosition": "left",
- "type": "noteNode",
- "width": 283,
- "dragHandle": ".note-drag-handle"
- }
- ],
- "edges": [
- {
- "id": "reactflow__edge-begin-Answer:SocialAdsWonderc",
- "markerEnd": "logo",
- "source": "begin",
- "sourceHandle": null,
- "style": {
- "stroke": "rgb(202 197 245)",
- "strokeWidth": 2
- },
- "target": "Answer:SocialAdsWonder",
- "targetHandle": "c",
- "type": "buttonEdge"
- },
- {
- "id": "reactflow__edge-Answer:SocialAdsWonderb-Retrieval:TrueCornersJamc",
- "markerEnd": "logo",
- "source": "Answer:SocialAdsWonder",
- "sourceHandle": "b",
- "style": {
- "stroke": "rgb(202 197 245)",
- "strokeWidth": 2
- },
- "target": "Retrieval:TrueCornersJam",
- "targetHandle": "c",
- "type": "buttonEdge"
- },
- {
- "id": "reactflow__edge-Answer:SocialAdsWonderb-Retrieval:EasyDryersShopc",
- "markerEnd": "logo",
- "source": "Answer:SocialAdsWonder",
- "sourceHandle": "b",
- "style": {
- "stroke": "rgb(202 197 245)",
- "strokeWidth": 2
- },
- "target": "Retrieval:EasyDryersShop",
- "targetHandle": "c",
- "type": "buttonEdge"
- },
- {
- "id": "reactflow__edge-Answer:SocialAdsWonderb-Retrieval:LazyChefsWatchc",
- "markerEnd": "logo",
- "source": "Answer:SocialAdsWonder",
- "sourceHandle": "b",
- "style": {
- "stroke": "rgb(202 197 245)",
- "strokeWidth": 2
- },
- "target": "Retrieval:LazyChefsWatch",
- "targetHandle": "c",
- "type": "buttonEdge"
- },
- {
- "id": "reactflow__edge-Retrieval:TrueCornersJamb-Generate:RareSymbolsGrinb",
- "markerEnd": "logo",
- "source": "Retrieval:TrueCornersJam",
- "sourceHandle": "b",
- "style": {
- "stroke": "rgb(202 197 245)",
- "strokeWidth": 2
- },
- "target": "Generate:RareSymbolsGrin",
- "targetHandle": "b",
- "type": "buttonEdge"
- },
- {
- "id": "reactflow__edge-Retrieval:EasyDryersShopb-Generate:RareSymbolsGrinb",
- "markerEnd": "logo",
- "source": "Retrieval:EasyDryersShop",
- "sourceHandle": "b",
- "style": {
- "stroke": "rgb(202 197 245)",
- "strokeWidth": 2
- },
- "target": "Generate:RareSymbolsGrin",
- "targetHandle": "b",
- "type": "buttonEdge"
- },
- {
- "id": "reactflow__edge-Retrieval:LazyChefsWatchb-Generate:RareSymbolsGrinb",
- "markerEnd": "logo",
- "source": "Retrieval:LazyChefsWatch",
- "sourceHandle": "b",
- "style": {
- "stroke": "rgb(202 197 245)",
- "strokeWidth": 2
- },
- "target": "Generate:RareSymbolsGrin",
- "targetHandle": "b",
- "type": "buttonEdge"
- },
- {
- "id": "reactflow__edge-Generate:RareSymbolsGrinc-Answer:SocialAdsWonderc",
- "markerEnd": "logo",
- "source": "Generate:RareSymbolsGrin",
- "sourceHandle": "c",
- "style": {
- "stroke": "rgb(202 197 245)",
- "strokeWidth": 2
- },
- "target": "Answer:SocialAdsWonder",
- "targetHandle": "c",
- "type": "buttonEdge"
- }
- ]
- },
- "history": [],
- "messages": [],
- "path": [],
- "reference": []
- },
- "avatar": ""
-}
+{
+ "id": 5,
+ "title": "Text To SQL",
+ "description": "An agent that converts user queries into SQL statements. You must prepare three knowledge bases: 1: DDL for your database; 2: Examples of user queries converted to SQL statements; 3: A comprehensive description of your database, including but not limited to tables and records.",
+ "canvas_type": "chatbot",
+ "dsl": {
+ "answer": [],
+ "components": {
+ "begin": {
+ "obj": {
+ "component_name": "Begin",
+ "params": {}
+ },
+ "downstream": [
+ "Answer:SocialAdsWonder"
+ ],
+ "upstream": []
+ },
+ "Answer:SocialAdsWonder": {
+ "obj": {
+ "component_name": "Answer",
+ "params": {}
+ },
+ "downstream": [
+ "Retrieval:TrueCornersJam",
+ "Retrieval:EasyDryersShop",
+ "Retrieval:LazyChefsWatch"
+ ],
+ "upstream": [
+ "begin",
+ "Generate:RareSymbolsGrin"
+ ]
+ },
+ "Retrieval:TrueCornersJam": {
+ "obj": {
+ "component_name": "Retrieval",
+ "params": {
+ "empty_response": "Nothing found in DDL!",
+ "kb_ids": [],
+ "keywords_similarity_weight": 0.3,
+ "similarity_threshold": 0.02,
+ "top_n": 8
+ }
+ },
+ "downstream": [
+ "Generate:RareSymbolsGrin"
+ ],
+ "upstream": [
+ "Answer:SocialAdsWonder"
+ ]
+ },
+ "Retrieval:EasyDryersShop": {
+ "obj": {
+ "component_name": "Retrieval",
+ "params": {
+ "empty_response": "Nothing found in Q-SQL!",
+ "kb_ids": [],
+ "keywords_similarity_weight": 0.3,
+ "similarity_threshold": 0.2,
+ "top_n": 8
+ }
+ },
+ "downstream": [
+ "Generate:RareSymbolsGrin"
+ ],
+ "upstream": [
+ "Answer:SocialAdsWonder"
+ ]
+ },
+ "Retrieval:LazyChefsWatch": {
+ "obj": {
+ "component_name": "Retrieval",
+ "params": {
+ "empty_response": "Nothing found in DB-Description!",
+ "kb_ids": [],
+ "keywords_similarity_weight": 0.3,
+ "similarity_threshold": 0.2,
+ "top_n": 8
+ }
+ },
+ "downstream": [
+ "Generate:RareSymbolsGrin"
+ ],
+ "upstream": [
+ "Answer:SocialAdsWonder"
+ ]
+ },
+ "Generate:RareSymbolsGrin": {
+ "obj": {
+ "component_name": "Generate",
+ "params": {
+ "cite": true,
+ "frequency_penalty": 0.7,
+ "llm_id": "deepseek-chat@DeepSeek",
+ "max_tokens": 256,
+ "message_history_window_size": 12,
+ "parameters": [
+ {
+ "component_id": "Retrieval:TrueCornersJam",
+ "id": "78644673-9236-4605-8110-59705fc38784",
+ "key": "ddl_input"
+ },
+ {
+ "component_id": "Retrieval:LazyChefsWatch",
+ "id": "afbf91ce-6f58-4573-b02d-9a4973f124f4",
+ "key": "db_input"
+ },
+ {
+ "component_id": "Retrieval:EasyDryersShop",
+ "id": "ee2b84f4-1cf5-43be-80e6-60bfaea3d834",
+ "key": "sql_input"
+ }
+ ],
+ "presence_penalty": 0.4,
+ "prompt": "##The user provides a question and you provide SQL. You will only respond with SQL code and not with any explanations.\n\n##Respond with only SQL code. Do not answer with any explanations -- just the code.\n\n##You may use the following DDL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {ddl_input}.\n\n##You may use the following documentation as a reference for what tables might be available. Use responses to past questions also to guide you: {db_input}.\n\n##You may use the following SQL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {sql_input}.",
+ "temperature": 0.1,
+ "top_p": 0.3
+ }
+ },
+ "downstream": [
+ "Answer:SocialAdsWonder"
+ ],
+ "upstream": [
+ "Retrieval:TrueCornersJam",
+ "Retrieval:EasyDryersShop",
+ "Retrieval:LazyChefsWatch"
+ ]
+ }
+ },
+ "embed_id": "",
+ "graph": {
+ "nodes": [
+ {
+ "data": {
+ "label": "Begin",
+ "name": "begin"
+ },
+ "dragging": false,
+ "height": 44,
+ "id": "begin",
+ "position": {
+ "x": -520.486587527275,
+ "y": 117.87988995940702
+ },
+ "positionAbsolute": {
+ "x": -520.486587527275,
+ "y": 117.87988995940702
+ },
+ "selected": false,
+ "sourcePosition": "left",
+ "targetPosition": "right",
+ "type": "beginNode",
+ "width": 100
+ },
+ {
+ "data": {
+ "form": {},
+ "label": "Answer",
+ "name": "interface"
+ },
+ "dragging": false,
+ "height": 44,
+ "id": "Answer:SocialAdsWonder",
+ "position": {
+ "x": -284.9289105495367,
+ "y": 119.9282206409824
+ },
+ "positionAbsolute": {
+ "x": -284.9289105495367,
+ "y": 119.9282206409824
+ },
+ "selected": false,
+ "sourcePosition": "right",
+ "targetPosition": "left",
+ "type": "logicNode",
+ "width": 200
+ },
+ {
+ "data": {
+ "form": {
+ "empty_response": "Nothing found in DDL!",
+ "kb_ids": [],
+ "keywords_similarity_weight": 0.3,
+ "similarity_threshold": 0.02,
+ "top_n": 8
+ },
+ "label": "Retrieval",
+ "name": "DDL"
+ },
+ "dragging": false,
+ "height": 44,
+ "id": "Retrieval:TrueCornersJam",
+ "position": {
+ "x": 119.61927071085717,
+ "y": -40.184181873335746
+ },
+ "positionAbsolute": {
+ "x": 119.61927071085717,
+ "y": -40.184181873335746
+ },
+ "selected": false,
+ "sourcePosition": "right",
+ "targetPosition": "left",
+ "type": "retrievalNode",
+ "width": 200
+ },
+ {
+ "data": {
+ "form": {
+ "empty_response": "Nothing found in Q-SQL!",
+ "kb_ids": [],
+ "keywords_similarity_weight": 0.3,
+ "similarity_threshold": 0.2,
+ "top_n": 8
+ },
+ "label": "Retrieval",
+ "name": "Q->SQL"
+ },
+ "dragging": false,
+ "height": 44,
+ "id": "Retrieval:EasyDryersShop",
+ "position": {
+ "x": 81.2024576603057,
+ "y": 94.16303322180948
+ },
+ "positionAbsolute": {
+ "x": 81.2024576603057,
+ "y": 94.16303322180948
+ },
+ "selected": false,
+ "sourcePosition": "right",
+ "targetPosition": "left",
+ "type": "retrievalNode",
+ "width": 200
+ },
+ {
+ "data": {
+ "form": {
+ "empty_response": "Nothing found in DB-Description!",
+ "kb_ids": [],
+ "keywords_similarity_weight": 0.3,
+ "similarity_threshold": 0.2,
+ "top_n": 8
+ },
+ "label": "Retrieval",
+ "name": "DB Description"
+ },
+ "dragging": false,
+ "height": 44,
+ "id": "Retrieval:LazyChefsWatch",
+ "position": {
+ "x": 51.228157704293324,
+ "y": 252.77721891325103
+ },
+ "positionAbsolute": {
+ "x": 51.228157704293324,
+ "y": 252.77721891325103
+ },
+ "selected": false,
+ "sourcePosition": "right",
+ "targetPosition": "left",
+ "type": "retrievalNode",
+ "width": 200
+ },
+ {
+ "data": {
+ "form": {
+ "cite": true,
+ "frequencyPenaltyEnabled": true,
+ "frequency_penalty": 0.7,
+ "llm_id": "deepseek-chat@DeepSeek",
+ "maxTokensEnabled": true,
+ "max_tokens": 256,
+ "message_history_window_size": 12,
+ "parameter": "Precise",
+ "parameters": [
+ {
+ "component_id": "Retrieval:TrueCornersJam",
+ "id": "78644673-9236-4605-8110-59705fc38784",
+ "key": "ddl_input"
+ },
+ {
+ "component_id": "Retrieval:LazyChefsWatch",
+ "id": "afbf91ce-6f58-4573-b02d-9a4973f124f4",
+ "key": "db_input"
+ },
+ {
+ "component_id": "Retrieval:EasyDryersShop",
+ "id": "ee2b84f4-1cf5-43be-80e6-60bfaea3d834",
+ "key": "sql_input"
+ }
+ ],
+ "presencePenaltyEnabled": true,
+ "presence_penalty": 0.4,
+ "prompt": "##The user provides a question and you provide SQL. You will only respond with SQL code and not with any explanations.\n\n##Respond with only SQL code. Do not answer with any explanations -- just the code.\n\n##You may use the following DDL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {ddl_input}.\n\n##You may use the following documentation as a reference for what tables might be available. Use responses to past questions also to guide you: {db_input}.\n\n##You may use the following SQL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {sql_input}.",
+ "temperature": 0.1,
+ "temperatureEnabled": true,
+ "topPEnabled": true,
+ "top_p": 0.3
+ },
+ "label": "Generate",
+ "name": "LLM"
+ },
+ "dragging": false,
+ "height": 212,
+ "id": "Generate:RareSymbolsGrin",
+ "position": {
+ "x": 6.6098512156750076,
+ "y": 405.0105548561454
+ },
+ "positionAbsolute": {
+ "x": 6.6098512156750076,
+ "y": 405.0105548561454
+ },
+ "selected": false,
+ "sourcePosition": "right",
+ "targetPosition": "left",
+ "type": "generateNode",
+ "width": 200
+ },
+ {
+ "data": {
+ "form": {
+ "text": "Receives a sentence that the user wants to convert into SQL and displays the result of the large model's SQL conversion."
+ },
+ "label": "Note",
+ "name": "N: Interface"
+ },
+ "dragging": false,
+ "height": 132,
+ "id": "Note:GentleRabbitsWonder",
+ "position": {
+ "x": -287.3066094433631,
+ "y": -30.808189185380513
+ },
+ "positionAbsolute": {
+ "x": -287.3066094433631,
+ "y": -30.808189185380513
+ },
+ "resizing": false,
+ "selected": false,
+ "sourcePosition": "right",
+ "style": {
+ "height": 132,
+ "width": 324
+ },
+ "targetPosition": "left",
+ "type": "noteNode",
+ "width": 324,
+ "dragHandle": ".note-drag-handle"
+ },
+ {
+ "data": {
+ "form": {
+ "text": "The large model learns which tables may be available based on the responses from three knowledge bases and converts the user's input into SQL statements."
+ },
+ "label": "Note",
+ "name": "N: LLM"
+ },
+ "dragging": false,
+ "height": 147,
+ "id": "Note:SixCitiesJoke",
+ "position": {
+ "x": 5.12121582244032,
+ "y": 637.6539219843564
+ },
+ "positionAbsolute": {
+ "x": 5.12121582244032,
+ "y": 637.6539219843564
+ },
+ "resizing": false,
+ "selected": false,
+ "sourcePosition": "right",
+ "style": {
+ "height": 147,
+ "width": 326
+ },
+ "targetPosition": "left",
+ "type": "noteNode",
+ "width": 326,
+ "dragHandle": ".note-drag-handle"
+ },
+ {
+ "data": {
+ "form": {
+ "text": "Searches for description about meanings of tables and fields."
+ },
+ "label": "Note",
+ "name": "N: DB description"
+ },
+ "dragging": false,
+ "height": 128,
+ "id": "Note:FamousCarpetsTaste",
+ "position": {
+ "x": 399.9267065852242,
+ "y": 250.0329701879931
+ },
+ "positionAbsolute": {
+ "x": 399.9267065852242,
+ "y": 250.0329701879931
+ },
+ "selected": false,
+ "sourcePosition": "right",
+ "targetPosition": "left",
+ "type": "noteNode",
+ "width": 269,
+ "dragHandle": ".note-drag-handle"
+ },
+ {
+ "data": {
+ "form": {
+ "text": "Searches for samples about question to SQL.\nPlease check this dataset: https://huggingface.co/datasets/InfiniFlow/text2sql"
+ },
+ "label": "Note",
+ "name": "N: Q->SQL"
+ },
+ "dragging": false,
+ "height": 130,
+ "id": "Note:PoliteBeesArrive",
+ "position": {
+ "x": 489.0393427986917,
+ "y": 96.58232093146341
+ },
+ "positionAbsolute": {
+ "x": 489.0393427986917,
+ "y": 96.58232093146341
+ },
+ "resizing": false,
+ "selected": false,
+ "sourcePosition": "right",
+ "style": {
+ "height": 130,
+ "width": 451
+ },
+ "targetPosition": "left",
+ "type": "noteNode",
+ "width": 451,
+ "dragHandle": ".note-drag-handle"
+ },
+ {
+ "data": {
+ "form": {
+ "text": "DDL(Data Definition Language).\n\nSearches for relevant database creation statements.\n\nIt should bind with a KB to which DDL is dumped in.\nYou could use 'General' as parsing method and ';' as delimiter."
+ },
+ "label": "Note",
+ "name": "N: DDL"
+ },
+ "dragging": false,
+ "height": 258,
+ "id": "Note:SmartWingsDouble",
+ "position": {
+ "x": 404.1930553966363,
+ "y": -208.84980249039137
+ },
+ "positionAbsolute": {
+ "x": 404.1930553966363,
+ "y": -208.84980249039137
+ },
+ "resizing": false,
+ "selected": false,
+ "sourcePosition": "right",
+ "style": {
+ "height": 258,
+ "width": 283
+ },
+ "targetPosition": "left",
+ "type": "noteNode",
+ "width": 283,
+ "dragHandle": ".note-drag-handle"
+ }
+ ],
+ "edges": [
+ {
+ "id": "reactflow__edge-begin-Answer:SocialAdsWonderc",
+ "markerEnd": "logo",
+ "source": "begin",
+ "sourceHandle": null,
+ "style": {
+ "stroke": "rgb(202 197 245)",
+ "strokeWidth": 2
+ },
+ "target": "Answer:SocialAdsWonder",
+ "targetHandle": "c",
+ "type": "buttonEdge"
+ },
+ {
+ "id": "reactflow__edge-Answer:SocialAdsWonderb-Retrieval:TrueCornersJamc",
+ "markerEnd": "logo",
+ "source": "Answer:SocialAdsWonder",
+ "sourceHandle": "b",
+ "style": {
+ "stroke": "rgb(202 197 245)",
+ "strokeWidth": 2
+ },
+ "target": "Retrieval:TrueCornersJam",
+ "targetHandle": "c",
+ "type": "buttonEdge"
+ },
+ {
+ "id": "reactflow__edge-Answer:SocialAdsWonderb-Retrieval:EasyDryersShopc",
+ "markerEnd": "logo",
+ "source": "Answer:SocialAdsWonder",
+ "sourceHandle": "b",
+ "style": {
+ "stroke": "rgb(202 197 245)",
+ "strokeWidth": 2
+ },
+ "target": "Retrieval:EasyDryersShop",
+ "targetHandle": "c",
+ "type": "buttonEdge"
+ },
+ {
+ "id": "reactflow__edge-Answer:SocialAdsWonderb-Retrieval:LazyChefsWatchc",
+ "markerEnd": "logo",
+ "source": "Answer:SocialAdsWonder",
+ "sourceHandle": "b",
+ "style": {
+ "stroke": "rgb(202 197 245)",
+ "strokeWidth": 2
+ },
+ "target": "Retrieval:LazyChefsWatch",
+ "targetHandle": "c",
+ "type": "buttonEdge"
+ },
+ {
+ "id": "reactflow__edge-Retrieval:TrueCornersJamb-Generate:RareSymbolsGrinb",
+ "markerEnd": "logo",
+ "source": "Retrieval:TrueCornersJam",
+ "sourceHandle": "b",
+ "style": {
+ "stroke": "rgb(202 197 245)",
+ "strokeWidth": 2
+ },
+ "target": "Generate:RareSymbolsGrin",
+ "targetHandle": "b",
+ "type": "buttonEdge"
+ },
+ {
+ "id": "reactflow__edge-Retrieval:EasyDryersShopb-Generate:RareSymbolsGrinb",
+ "markerEnd": "logo",
+ "source": "Retrieval:EasyDryersShop",
+ "sourceHandle": "b",
+ "style": {
+ "stroke": "rgb(202 197 245)",
+ "strokeWidth": 2
+ },
+ "target": "Generate:RareSymbolsGrin",
+ "targetHandle": "b",
+ "type": "buttonEdge"
+ },
+ {
+ "id": "reactflow__edge-Retrieval:LazyChefsWatchb-Generate:RareSymbolsGrinb",
+ "markerEnd": "logo",
+ "source": "Retrieval:LazyChefsWatch",
+ "sourceHandle": "b",
+ "style": {
+ "stroke": "rgb(202 197 245)",
+ "strokeWidth": 2
+ },
+ "target": "Generate:RareSymbolsGrin",
+ "targetHandle": "b",
+ "type": "buttonEdge"
+ },
+ {
+ "id": "reactflow__edge-Generate:RareSymbolsGrinc-Answer:SocialAdsWonderc",
+ "markerEnd": "logo",
+ "source": "Generate:RareSymbolsGrin",
+ "sourceHandle": "c",
+ "style": {
+ "stroke": "rgb(202 197 245)",
+ "strokeWidth": 2
+ },
+ "target": "Answer:SocialAdsWonder",
+ "targetHandle": "c",
+ "type": "buttonEdge"
+ }
+ ]
+ },
+ "history": [],
+ "messages": [],
+ "path": [],
+ "reference": []
+ },
+ "avatar": ""
+}
diff --git a/agent/test/dsl_examples/concentrator_message.json b/agent/test/dsl_examples/concentrator_message.json
index 98d62b580..ee875ae02 100644
--- a/agent/test/dsl_examples/concentrator_message.json
+++ b/agent/test/dsl_examples/concentrator_message.json
@@ -1,113 +1,113 @@
-{
- "components": {
- "begin": {
- "obj":{
- "component_name": "Begin",
- "params": {
- "prologue": "Hi there!"
- }
- },
- "downstream": ["answer:0"],
- "upstream": []
- },
- "answer:0": {
- "obj": {
- "component_name": "Answer",
- "params": {}
- },
- "downstream": ["categorize:0"],
- "upstream": ["begin"]
- },
- "categorize:0": {
- "obj": {
- "component_name": "Categorize",
- "params": {
- "llm_id": "deepseek-chat",
- "category_description": {
- "product_related": {
- "description": "The question is about the product usage, appearance and how it works.",
- "examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?",
- "to": "concentrator:0"
- },
- "others": {
- "description": "The question is not about the product usage, appearance and how it works.",
- "examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?",
- "to": "concentrator:1"
- }
- }
- }
- },
- "downstream": ["concentrator:0","concentrator:1"],
- "upstream": ["answer:0"]
- },
- "concentrator:0": {
- "obj": {
- "component_name": "Concentrator",
- "params": {}
- },
- "downstream": ["message:0"],
- "upstream": ["categorize:0"]
- },
- "concentrator:1": {
- "obj": {
- "component_name": "Concentrator",
- "params": {}
- },
- "downstream": ["message:1_0","message:1_1","message:1_2"],
- "upstream": ["categorize:0"]
- },
- "message:0": {
- "obj": {
- "component_name": "Message",
- "params": {
- "messages": [
- "Message 0_0!!!!!!!"
- ]
- }
- },
- "downstream": ["answer:0"],
- "upstream": ["concentrator:0"]
- },
- "message:1_0": {
- "obj": {
- "component_name": "Message",
- "params": {
- "messages": [
- "Message 1_0!!!!!!!"
- ]
- }
- },
- "downstream": ["answer:0"],
- "upstream": ["concentrator:1"]
- },
- "message:1_1": {
- "obj": {
- "component_name": "Message",
- "params": {
- "messages": [
- "Message 1_1!!!!!!!"
- ]
- }
- },
- "downstream": ["answer:0"],
- "upstream": ["concentrator:1"]
- },
- "message:1_2": {
- "obj": {
- "component_name": "Message",
- "params": {
- "messages": [
- "Message 1_2!!!!!!!"
- ]
- }
- },
- "downstream": ["answer:0"],
- "upstream": ["concentrator:1"]
- }
- },
- "history": [],
- "messages": [],
- "path": [],
- "reference": [],
- "answer": []
+{
+ "components": {
+ "begin": {
+ "obj":{
+ "component_name": "Begin",
+ "params": {
+ "prologue": "Hi there!"
+ }
+ },
+ "downstream": ["answer:0"],
+ "upstream": []
+ },
+ "answer:0": {
+ "obj": {
+ "component_name": "Answer",
+ "params": {}
+ },
+ "downstream": ["categorize:0"],
+ "upstream": ["begin"]
+ },
+ "categorize:0": {
+ "obj": {
+ "component_name": "Categorize",
+ "params": {
+ "llm_id": "deepseek-chat",
+ "category_description": {
+ "product_related": {
+ "description": "The question is about the product usage, appearance and how it works.",
+ "examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?",
+ "to": "concentrator:0"
+ },
+ "others": {
+ "description": "The question is not about the product usage, appearance and how it works.",
+ "examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?",
+ "to": "concentrator:1"
+ }
+ }
+ }
+ },
+ "downstream": ["concentrator:0","concentrator:1"],
+ "upstream": ["answer:0"]
+ },
+ "concentrator:0": {
+ "obj": {
+ "component_name": "Concentrator",
+ "params": {}
+ },
+ "downstream": ["message:0"],
+ "upstream": ["categorize:0"]
+ },
+ "concentrator:1": {
+ "obj": {
+ "component_name": "Concentrator",
+ "params": {}
+ },
+ "downstream": ["message:1_0","message:1_1","message:1_2"],
+ "upstream": ["categorize:0"]
+ },
+ "message:0": {
+ "obj": {
+ "component_name": "Message",
+ "params": {
+ "messages": [
+ "Message 0_0!!!!!!!"
+ ]
+ }
+ },
+ "downstream": ["answer:0"],
+ "upstream": ["concentrator:0"]
+ },
+ "message:1_0": {
+ "obj": {
+ "component_name": "Message",
+ "params": {
+ "messages": [
+ "Message 1_0!!!!!!!"
+ ]
+ }
+ },
+ "downstream": ["answer:0"],
+ "upstream": ["concentrator:1"]
+ },
+ "message:1_1": {
+ "obj": {
+ "component_name": "Message",
+ "params": {
+ "messages": [
+ "Message 1_1!!!!!!!"
+ ]
+ }
+ },
+ "downstream": ["answer:0"],
+ "upstream": ["concentrator:1"]
+ },
+ "message:1_2": {
+ "obj": {
+ "component_name": "Message",
+ "params": {
+ "messages": [
+ "Message 1_2!!!!!!!"
+ ]
+ }
+ },
+ "downstream": ["answer:0"],
+ "upstream": ["concentrator:1"]
+ }
+ },
+ "history": [],
+ "messages": [],
+ "path": [],
+ "reference": [],
+ "answer": []
}
\ No newline at end of file
diff --git a/rag/svr/cache_file_svr.py b/rag/svr/cache_file_svr.py
index 4bbadf0f8..5c984db97 100644
--- a/rag/svr/cache_file_svr.py
+++ b/rag/svr/cache_file_svr.py
@@ -1,60 +1,60 @@
-#
-# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-import logging
-import time
-import traceback
-
-from api.db.db_models import close_connection
-from api.db.services.task_service import TaskService
-from rag.utils.storage_factory import STORAGE_IMPL
-from rag.utils.redis_conn import REDIS_CONN
-
-
-def collect():
- doc_locations = TaskService.get_ongoing_doc_name()
- logging.debug(doc_locations)
- if len(doc_locations) == 0:
- time.sleep(1)
- return
- return doc_locations
-
-
-def main():
- locations = collect()
- if not locations:
- return
- logging.info(f"TASKS: {len(locations)}")
- for kb_id, loc in locations:
- try:
- if REDIS_CONN.is_alive():
- try:
- key = "{}/{}".format(kb_id, loc)
- if REDIS_CONN.exist(key):
- continue
- file_bin = STORAGE_IMPL.get(kb_id, loc)
- REDIS_CONN.transaction(key, file_bin, 12 * 60)
- logging.info("CACHE: {}".format(loc))
- except Exception as e:
- traceback.print_stack(e)
- except Exception as e:
- traceback.print_stack(e)
-
-
-if __name__ == "__main__":
- while True:
- main()
- close_connection()
+#
+# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+import logging
+import time
+import traceback
+
+from api.db.db_models import close_connection
+from api.db.services.task_service import TaskService
+from rag.utils.storage_factory import STORAGE_IMPL
+from rag.utils.redis_conn import REDIS_CONN
+
+
+def collect():
+ doc_locations = TaskService.get_ongoing_doc_name()
+ logging.debug(doc_locations)
+ if len(doc_locations) == 0:
+ time.sleep(1)
+ return
+ return doc_locations
+
+
+def main():
+ locations = collect()
+ if not locations:
+ return
+ logging.info(f"TASKS: {len(locations)}")
+ for kb_id, loc in locations:
+ try:
+ if REDIS_CONN.is_alive():
+ try:
+ key = "{}/{}".format(kb_id, loc)
+ if REDIS_CONN.exist(key):
+ continue
+ file_bin = STORAGE_IMPL.get(kb_id, loc)
+ REDIS_CONN.transaction(key, file_bin, 12 * 60)
+ logging.info("CACHE: {}".format(loc))
+ except Exception as e:
+ traceback.print_stack(e)
+ except Exception as e:
+ traceback.print_stack(e)
+
+
+if __name__ == "__main__":
+ while True:
+ main()
+ close_connection()
time.sleep(1)
\ No newline at end of file
diff --git a/sdk/python/ragflow_sdk/modules/base.py b/sdk/python/ragflow_sdk/modules/base.py
index ced942d2c..49aa18db3 100644
--- a/sdk/python/ragflow_sdk/modules/base.py
+++ b/sdk/python/ragflow_sdk/modules/base.py
@@ -1,38 +1,38 @@
-class Base(object):
- def __init__(self, rag, res_dict):
- self.rag = rag
- for k, v in res_dict.items():
- if isinstance(v, dict):
- self.__dict__[k] = Base(rag, v)
- else:
- self.__dict__[k] = v
-
- def to_json(self):
- pr = {}
- for name in dir(self):
- value = getattr(self, name)
- if not name.startswith('__') and not callable(value) and name != "rag":
- if isinstance(value, Base):
- pr[name] = value.to_json()
- else:
- pr[name] = value
- return pr
-
- def post(self, path, json=None, stream=False, files=None):
- res = self.rag.post(path, json, stream=stream,files=files)
- return res
-
- def get(self, path, params=None):
- res = self.rag.get(path, params)
- return res
-
- def rm(self, path, json):
- res = self.rag.delete(path, json)
- return res
-
- def put(self,path, json):
- res = self.rag.put(path,json)
- return res
-
- def __str__(self):
- return str(self.to_json())
+class Base(object):
+ def __init__(self, rag, res_dict):
+ self.rag = rag
+ for k, v in res_dict.items():
+ if isinstance(v, dict):
+ self.__dict__[k] = Base(rag, v)
+ else:
+ self.__dict__[k] = v
+
+ def to_json(self):
+ pr = {}
+ for name in dir(self):
+ value = getattr(self, name)
+ if not name.startswith('__') and not callable(value) and name != "rag":
+ if isinstance(value, Base):
+ pr[name] = value.to_json()
+ else:
+ pr[name] = value
+ return pr
+
+ def post(self, path, json=None, stream=False, files=None):
+ res = self.rag.post(path, json, stream=stream,files=files)
+ return res
+
+ def get(self, path, params=None):
+ res = self.rag.get(path, params)
+ return res
+
+ def rm(self, path, json):
+ res = self.rag.delete(path, json)
+ return res
+
+ def put(self,path, json):
+ res = self.rag.put(path,json)
+ return res
+
+ def __str__(self):
+ return str(self.to_json())
diff --git a/sdk/python/ragflow_sdk/modules/session.py b/sdk/python/ragflow_sdk/modules/session.py
index 3ea275eb5..dcfc3392b 100644
--- a/sdk/python/ragflow_sdk/modules/session.py
+++ b/sdk/python/ragflow_sdk/modules/session.py
@@ -1,73 +1,73 @@
-import json
-
-from .base import Base
-
-
-class Session(Base):
- def __init__(self, rag, res_dict):
- self.id = None
- self.name = "New session"
- self.messages = [{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]
- for key,value in res_dict.items():
- if key =="chat_id" and value is not None:
- self.chat_id = None
- self.__session_type = "chat"
- if key == "agent_id" and value is not None:
- self.agent_id = None
- self.__session_type = "agent"
- super().__init__(rag, res_dict)
-
- def ask(self, question="",stream=True,**kwargs):
- if self.__session_type == "agent":
- res=self._ask_agent(question,stream)
- elif self.__session_type == "chat":
- res=self._ask_chat(question,stream,**kwargs)
- for line in res.iter_lines():
- line = line.decode("utf-8")
- if line.startswith("{"):
- json_data = json.loads(line)
- raise Exception(json_data["message"])
- if not line.startswith("data:"):
- continue
- json_data = json.loads(line[5:])
- if json_data["data"] is True or json_data["data"].get("running_status"):
- continue
- answer = json_data["data"]["answer"]
- reference = json_data["data"].get("reference", {})
- temp_dict = {
- "content": answer,
- "role": "assistant"
- }
- if reference and "chunks" in reference:
- chunks = reference["chunks"]
- temp_dict["reference"] = chunks
- message = Message(self.rag, temp_dict)
- yield message
-
- def _ask_chat(self, question: str, stream: bool,**kwargs):
- json_data={"question": question, "stream": True,"session_id":self.id}
- json_data.update(kwargs)
- res = self.post(f"/chats/{self.chat_id}/completions",
- json_data, stream=stream)
- return res
-
- def _ask_agent(self,question:str,stream:bool):
- res = self.post(f"/agents/{self.agent_id}/completions",
- {"question": question, "stream": True,"session_id":self.id}, stream=stream)
- return res
-
- def update(self,update_message):
- res = self.put(f"/chats/{self.chat_id}/sessions/{self.id}",
- update_message)
- res = res.json()
- if res.get("code") != 0:
- raise Exception(res.get("message"))
-
-class Message(Base):
- def __init__(self, rag, res_dict):
- self.content = "Hi! I am your assistant,can I help you?"
- self.reference = None
- self.role = "assistant"
- self.prompt = None
- self.id = None
- super().__init__(rag, res_dict)
+import json
+
+from .base import Base
+
+
+class Session(Base):
+ def __init__(self, rag, res_dict):
+ self.id = None
+ self.name = "New session"
+ self.messages = [{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]
+ for key,value in res_dict.items():
+ if key =="chat_id" and value is not None:
+ self.chat_id = None
+ self.__session_type = "chat"
+ if key == "agent_id" and value is not None:
+ self.agent_id = None
+ self.__session_type = "agent"
+ super().__init__(rag, res_dict)
+
+ def ask(self, question="",stream=True,**kwargs):
+ if self.__session_type == "agent":
+ res=self._ask_agent(question,stream)
+ elif self.__session_type == "chat":
+ res=self._ask_chat(question,stream,**kwargs)
+ for line in res.iter_lines():
+ line = line.decode("utf-8")
+ if line.startswith("{"):
+ json_data = json.loads(line)
+ raise Exception(json_data["message"])
+ if not line.startswith("data:"):
+ continue
+ json_data = json.loads(line[5:])
+ if json_data["data"] is True or json_data["data"].get("running_status"):
+ continue
+ answer = json_data["data"]["answer"]
+ reference = json_data["data"].get("reference", {})
+ temp_dict = {
+ "content": answer,
+ "role": "assistant"
+ }
+ if reference and "chunks" in reference:
+ chunks = reference["chunks"]
+ temp_dict["reference"] = chunks
+ message = Message(self.rag, temp_dict)
+ yield message
+
+ def _ask_chat(self, question: str, stream: bool,**kwargs):
+ json_data={"question": question, "stream": True,"session_id":self.id}
+ json_data.update(kwargs)
+ res = self.post(f"/chats/{self.chat_id}/completions",
+ json_data, stream=stream)
+ return res
+
+ def _ask_agent(self,question:str,stream:bool):
+ res = self.post(f"/agents/{self.agent_id}/completions",
+ {"question": question, "stream": True,"session_id":self.id}, stream=stream)
+ return res
+
+ def update(self,update_message):
+ res = self.put(f"/chats/{self.chat_id}/sessions/{self.id}",
+ update_message)
+ res = res.json()
+ if res.get("code") != 0:
+ raise Exception(res.get("message"))
+
+class Message(Base):
+ def __init__(self, rag, res_dict):
+ self.content = "Hi! I am your assistant,can I help you?"
+ self.reference = None
+ self.role = "assistant"
+ self.prompt = None
+ self.id = None
+ super().__init__(rag, res_dict)