From fd0bf3adf0261b96ab2cf3c53897276d46c3435b Mon Sep 17 00:00:00 2001 From: Jin Hai Date: Mon, 13 Jan 2025 18:19:01 +0800 Subject: [PATCH] Format: dos2unix (#4467) ### What problem does this PR solve? Format the code ### Type of change - [x] Refactoring Signed-off-by: Jin Hai --- agent/component/akshare.py | 112 +- agent/component/concentrator.py | 70 +- agent/component/jin10.py | 260 ++-- agent/component/tushare.py | 144 +- agent/component/wencai.py | 160 +-- agent/component/yahoofinance.py | 168 +-- agent/templates/investment_advisor.json | 1142 ++++++++-------- agent/templates/text2sql.json | 1170 ++++++++--------- .../dsl_examples/concentrator_message.json | 224 ++-- rag/svr/cache_file_svr.py | 118 +- sdk/python/ragflow_sdk/modules/base.py | 76 +- sdk/python/ragflow_sdk/modules/session.py | 146 +- 12 files changed, 1895 insertions(+), 1895 deletions(-) diff --git a/agent/component/akshare.py b/agent/component/akshare.py index c6ed2fb6f..36b3131b3 100644 --- a/agent/component/akshare.py +++ b/agent/component/akshare.py @@ -1,56 +1,56 @@ -# -# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -from abc import ABC -import pandas as pd -import akshare as ak -from agent.component.base import ComponentBase, ComponentParamBase - - -class AkShareParam(ComponentParamBase): - """ - Define the AkShare component parameters. - """ - - def __init__(self): - super().__init__() - self.top_n = 10 - - def check(self): - self.check_positive_integer(self.top_n, "Top N") - - -class AkShare(ComponentBase, ABC): - component_name = "AkShare" - - def _run(self, history, **kwargs): - ans = self.get_input() - ans = ",".join(ans["content"]) if "content" in ans else "" - if not ans: - return AkShare.be_output("") - - try: - ak_res = [] - stock_news_em_df = ak.stock_news_em(symbol=ans) - stock_news_em_df = stock_news_em_df.head(self._param.top_n) - ak_res = [{"content": '' + i["新闻标题"] + '\n 新闻内容: ' + i[ - "新闻内容"] + " \n发布时间:" + i["发布时间"] + " \n文章来源: " + i["文章来源"]} for index, i in stock_news_em_df.iterrows()] - except Exception as e: - return AkShare.be_output("**ERROR**: " + str(e)) - - if not ak_res: - return AkShare.be_output("") - - return pd.DataFrame(ak_res) +# +# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +from abc import ABC +import pandas as pd +import akshare as ak +from agent.component.base import ComponentBase, ComponentParamBase + + +class AkShareParam(ComponentParamBase): + """ + Define the AkShare component parameters. + """ + + def __init__(self): + super().__init__() + self.top_n = 10 + + def check(self): + self.check_positive_integer(self.top_n, "Top N") + + +class AkShare(ComponentBase, ABC): + component_name = "AkShare" + + def _run(self, history, **kwargs): + ans = self.get_input() + ans = ",".join(ans["content"]) if "content" in ans else "" + if not ans: + return AkShare.be_output("") + + try: + ak_res = [] + stock_news_em_df = ak.stock_news_em(symbol=ans) + stock_news_em_df = stock_news_em_df.head(self._param.top_n) + ak_res = [{"content": '' + i["新闻标题"] + '\n 新闻内容: ' + i[ + "新闻内容"] + " \n发布时间:" + i["发布时间"] + " \n文章来源: " + i["文章来源"]} for index, i in stock_news_em_df.iterrows()] + except Exception as e: + return AkShare.be_output("**ERROR**: " + str(e)) + + if not ak_res: + return AkShare.be_output("") + + return pd.DataFrame(ak_res) diff --git a/agent/component/concentrator.py b/agent/component/concentrator.py index 8ebaad507..efb9dd840 100644 --- a/agent/component/concentrator.py +++ b/agent/component/concentrator.py @@ -1,36 +1,36 @@ -# -# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -from abc import ABC -from agent.component.base import ComponentBase, ComponentParamBase - - -class ConcentratorParam(ComponentParamBase): - """ - Define the Concentrator component parameters. - """ - - def __init__(self): - super().__init__() - - def check(self): - return True - - -class Concentrator(ComponentBase, ABC): - component_name = "Concentrator" - - def _run(self, history, **kwargs): +# +# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +from abc import ABC +from agent.component.base import ComponentBase, ComponentParamBase + + +class ConcentratorParam(ComponentParamBase): + """ + Define the Concentrator component parameters. + """ + + def __init__(self): + super().__init__() + + def check(self): + return True + + +class Concentrator(ComponentBase, ABC): + component_name = "Concentrator" + + def _run(self, history, **kwargs): return Concentrator.be_output("") \ No newline at end of file diff --git a/agent/component/jin10.py b/agent/component/jin10.py index 9ff064da1..583a18286 100644 --- a/agent/component/jin10.py +++ b/agent/component/jin10.py @@ -1,130 +1,130 @@ -# -# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -import json -from abc import ABC -import pandas as pd -import requests -from agent.component.base import ComponentBase, ComponentParamBase - - -class Jin10Param(ComponentParamBase): - """ - Define the Jin10 component parameters. - """ - - def __init__(self): - super().__init__() - self.type = "flash" - self.secret_key = "xxx" - self.flash_type = '1' - self.calendar_type = 'cj' - self.calendar_datatype = 'data' - self.symbols_type = 'GOODS' - self.symbols_datatype = 'symbols' - self.contain = "" - self.filter = "" - - def check(self): - self.check_valid_value(self.type, "Type", ['flash', 'calendar', 'symbols', 'news']) - self.check_valid_value(self.flash_type, "Flash Type", ['1', '2', '3', '4', '5']) - self.check_valid_value(self.calendar_type, "Calendar Type", ['cj', 'qh', 'hk', 'us']) - self.check_valid_value(self.calendar_datatype, "Calendar DataType", ['data', 'event', 'holiday']) - self.check_valid_value(self.symbols_type, "Symbols Type", ['GOODS', 'FOREX', 'FUTURE', 'CRYPTO']) - self.check_valid_value(self.symbols_datatype, 'Symbols DataType', ['symbols', 'quotes']) - - -class Jin10(ComponentBase, ABC): - component_name = "Jin10" - - def _run(self, history, **kwargs): - ans = self.get_input() - ans = " - ".join(ans["content"]) if "content" in ans else "" - if not ans: - return Jin10.be_output("") - - jin10_res = [] - headers = {'secret-key': self._param.secret_key} - try: - if self._param.type == "flash": - params = { - 'category': self._param.flash_type, - 'contain': self._param.contain, - 'filter': self._param.filter - } - response = requests.get( - url='https://open-data-api.jin10.com/data-api/flash?category=' + self._param.flash_type, - headers=headers, data=json.dumps(params)) - response = response.json() - for i in response['data']: - jin10_res.append({"content": i['data']['content']}) - if self._param.type == "calendar": - params = { - 'category': self._param.calendar_type - } - response = requests.get( - url='https://open-data-api.jin10.com/data-api/calendar/' + self._param.calendar_datatype + '?category=' + self._param.calendar_type, - headers=headers, data=json.dumps(params)) - - response = response.json() - jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()}) - if self._param.type == "symbols": - params = { - 'type': self._param.symbols_type - } - if self._param.symbols_datatype == "quotes": - params['codes'] = 'BTCUSD' - response = requests.get( - url='https://open-data-api.jin10.com/data-api/' + self._param.symbols_datatype + '?type=' + self._param.symbols_type, - headers=headers, data=json.dumps(params)) - response = response.json() - if self._param.symbols_datatype == "symbols": - for i in response['data']: - i['Commodity Code'] = i['c'] - i['Stock Exchange'] = i['e'] - i['Commodity Name'] = i['n'] - i['Commodity Type'] = i['t'] - del i['c'], i['e'], i['n'], i['t'] - if self._param.symbols_datatype == "quotes": - for i in response['data']: - i['Selling Price'] = i['a'] - i['Buying Price'] = i['b'] - i['Commodity Code'] = i['c'] - i['Stock Exchange'] = i['e'] - i['Highest Price'] = i['h'] - i['Yesterday’s Closing Price'] = i['hc'] - i['Lowest Price'] = i['l'] - i['Opening Price'] = i['o'] - i['Latest Price'] = i['p'] - i['Market Quote Time'] = i['t'] - del i['a'], i['b'], i['c'], i['e'], i['h'], i['hc'], i['l'], i['o'], i['p'], i['t'] - jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()}) - if self._param.type == "news": - params = { - 'contain': self._param.contain, - 'filter': self._param.filter - } - response = requests.get( - url='https://open-data-api.jin10.com/data-api/news', - headers=headers, data=json.dumps(params)) - response = response.json() - jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()}) - except Exception as e: - return Jin10.be_output("**ERROR**: " + str(e)) - - if not jin10_res: - return Jin10.be_output("") - - return pd.DataFrame(jin10_res) +# +# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +import json +from abc import ABC +import pandas as pd +import requests +from agent.component.base import ComponentBase, ComponentParamBase + + +class Jin10Param(ComponentParamBase): + """ + Define the Jin10 component parameters. + """ + + def __init__(self): + super().__init__() + self.type = "flash" + self.secret_key = "xxx" + self.flash_type = '1' + self.calendar_type = 'cj' + self.calendar_datatype = 'data' + self.symbols_type = 'GOODS' + self.symbols_datatype = 'symbols' + self.contain = "" + self.filter = "" + + def check(self): + self.check_valid_value(self.type, "Type", ['flash', 'calendar', 'symbols', 'news']) + self.check_valid_value(self.flash_type, "Flash Type", ['1', '2', '3', '4', '5']) + self.check_valid_value(self.calendar_type, "Calendar Type", ['cj', 'qh', 'hk', 'us']) + self.check_valid_value(self.calendar_datatype, "Calendar DataType", ['data', 'event', 'holiday']) + self.check_valid_value(self.symbols_type, "Symbols Type", ['GOODS', 'FOREX', 'FUTURE', 'CRYPTO']) + self.check_valid_value(self.symbols_datatype, 'Symbols DataType', ['symbols', 'quotes']) + + +class Jin10(ComponentBase, ABC): + component_name = "Jin10" + + def _run(self, history, **kwargs): + ans = self.get_input() + ans = " - ".join(ans["content"]) if "content" in ans else "" + if not ans: + return Jin10.be_output("") + + jin10_res = [] + headers = {'secret-key': self._param.secret_key} + try: + if self._param.type == "flash": + params = { + 'category': self._param.flash_type, + 'contain': self._param.contain, + 'filter': self._param.filter + } + response = requests.get( + url='https://open-data-api.jin10.com/data-api/flash?category=' + self._param.flash_type, + headers=headers, data=json.dumps(params)) + response = response.json() + for i in response['data']: + jin10_res.append({"content": i['data']['content']}) + if self._param.type == "calendar": + params = { + 'category': self._param.calendar_type + } + response = requests.get( + url='https://open-data-api.jin10.com/data-api/calendar/' + self._param.calendar_datatype + '?category=' + self._param.calendar_type, + headers=headers, data=json.dumps(params)) + + response = response.json() + jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()}) + if self._param.type == "symbols": + params = { + 'type': self._param.symbols_type + } + if self._param.symbols_datatype == "quotes": + params['codes'] = 'BTCUSD' + response = requests.get( + url='https://open-data-api.jin10.com/data-api/' + self._param.symbols_datatype + '?type=' + self._param.symbols_type, + headers=headers, data=json.dumps(params)) + response = response.json() + if self._param.symbols_datatype == "symbols": + for i in response['data']: + i['Commodity Code'] = i['c'] + i['Stock Exchange'] = i['e'] + i['Commodity Name'] = i['n'] + i['Commodity Type'] = i['t'] + del i['c'], i['e'], i['n'], i['t'] + if self._param.symbols_datatype == "quotes": + for i in response['data']: + i['Selling Price'] = i['a'] + i['Buying Price'] = i['b'] + i['Commodity Code'] = i['c'] + i['Stock Exchange'] = i['e'] + i['Highest Price'] = i['h'] + i['Yesterday’s Closing Price'] = i['hc'] + i['Lowest Price'] = i['l'] + i['Opening Price'] = i['o'] + i['Latest Price'] = i['p'] + i['Market Quote Time'] = i['t'] + del i['a'], i['b'], i['c'], i['e'], i['h'], i['hc'], i['l'], i['o'], i['p'], i['t'] + jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()}) + if self._param.type == "news": + params = { + 'contain': self._param.contain, + 'filter': self._param.filter + } + response = requests.get( + url='https://open-data-api.jin10.com/data-api/news', + headers=headers, data=json.dumps(params)) + response = response.json() + jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()}) + except Exception as e: + return Jin10.be_output("**ERROR**: " + str(e)) + + if not jin10_res: + return Jin10.be_output("") + + return pd.DataFrame(jin10_res) diff --git a/agent/component/tushare.py b/agent/component/tushare.py index 236c79f63..bb9d34fe9 100644 --- a/agent/component/tushare.py +++ b/agent/component/tushare.py @@ -1,72 +1,72 @@ -# -# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -import json -from abc import ABC -import pandas as pd -import time -import requests -from agent.component.base import ComponentBase, ComponentParamBase - - -class TuShareParam(ComponentParamBase): - """ - Define the TuShare component parameters. - """ - - def __init__(self): - super().__init__() - self.token = "xxx" - self.src = "eastmoney" - self.start_date = "2024-01-01 09:00:00" - self.end_date = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) - self.keyword = "" - - def check(self): - self.check_valid_value(self.src, "Quick News Source", - ["sina", "wallstreetcn", "10jqka", "eastmoney", "yuncaijing", "fenghuang", "jinrongjie"]) - - -class TuShare(ComponentBase, ABC): - component_name = "TuShare" - - def _run(self, history, **kwargs): - ans = self.get_input() - ans = ",".join(ans["content"]) if "content" in ans else "" - if not ans: - return TuShare.be_output("") - - try: - tus_res = [] - params = { - "api_name": "news", - "token": self._param.token, - "params": {"src": self._param.src, "start_date": self._param.start_date, - "end_date": self._param.end_date} - } - response = requests.post(url="http://api.tushare.pro", data=json.dumps(params).encode('utf-8')) - response = response.json() - if response['code'] != 0: - return TuShare.be_output(response['msg']) - df = pd.DataFrame(response['data']['items']) - df.columns = response['data']['fields'] - tus_res.append({"content": (df[df['content'].str.contains(self._param.keyword, case=False)]).to_markdown()}) - except Exception as e: - return TuShare.be_output("**ERROR**: " + str(e)) - - if not tus_res: - return TuShare.be_output("") - - return pd.DataFrame(tus_res) +# +# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +import json +from abc import ABC +import pandas as pd +import time +import requests +from agent.component.base import ComponentBase, ComponentParamBase + + +class TuShareParam(ComponentParamBase): + """ + Define the TuShare component parameters. + """ + + def __init__(self): + super().__init__() + self.token = "xxx" + self.src = "eastmoney" + self.start_date = "2024-01-01 09:00:00" + self.end_date = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + self.keyword = "" + + def check(self): + self.check_valid_value(self.src, "Quick News Source", + ["sina", "wallstreetcn", "10jqka", "eastmoney", "yuncaijing", "fenghuang", "jinrongjie"]) + + +class TuShare(ComponentBase, ABC): + component_name = "TuShare" + + def _run(self, history, **kwargs): + ans = self.get_input() + ans = ",".join(ans["content"]) if "content" in ans else "" + if not ans: + return TuShare.be_output("") + + try: + tus_res = [] + params = { + "api_name": "news", + "token": self._param.token, + "params": {"src": self._param.src, "start_date": self._param.start_date, + "end_date": self._param.end_date} + } + response = requests.post(url="http://api.tushare.pro", data=json.dumps(params).encode('utf-8')) + response = response.json() + if response['code'] != 0: + return TuShare.be_output(response['msg']) + df = pd.DataFrame(response['data']['items']) + df.columns = response['data']['fields'] + tus_res.append({"content": (df[df['content'].str.contains(self._param.keyword, case=False)]).to_markdown()}) + except Exception as e: + return TuShare.be_output("**ERROR**: " + str(e)) + + if not tus_res: + return TuShare.be_output("") + + return pd.DataFrame(tus_res) diff --git a/agent/component/wencai.py b/agent/component/wencai.py index e518c54a2..8f8c35181 100644 --- a/agent/component/wencai.py +++ b/agent/component/wencai.py @@ -1,80 +1,80 @@ -# -# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -from abc import ABC -import pandas as pd -import pywencai -from agent.component.base import ComponentBase, ComponentParamBase - - -class WenCaiParam(ComponentParamBase): - """ - Define the WenCai component parameters. - """ - - def __init__(self): - super().__init__() - self.top_n = 10 - self.query_type = "stock" - - def check(self): - self.check_positive_integer(self.top_n, "Top N") - self.check_valid_value(self.query_type, "Query type", - ['stock', 'zhishu', 'fund', 'hkstock', 'usstock', 'threeboard', 'conbond', 'insurance', - 'futures', 'lccp', - 'foreign_exchange']) - - -class WenCai(ComponentBase, ABC): - component_name = "WenCai" - - def _run(self, history, **kwargs): - ans = self.get_input() - ans = ",".join(ans["content"]) if "content" in ans else "" - if not ans: - return WenCai.be_output("") - - try: - wencai_res = [] - res = pywencai.get(query=ans, query_type=self._param.query_type, perpage=self._param.top_n) - if isinstance(res, pd.DataFrame): - wencai_res.append({"content": res.to_markdown()}) - if isinstance(res, dict): - for item in res.items(): - if isinstance(item[1], list): - wencai_res.append({"content": item[0] + "\n" + pd.DataFrame(item[1]).to_markdown()}) - continue - if isinstance(item[1], str): - wencai_res.append({"content": item[0] + "\n" + item[1]}) - continue - if isinstance(item[1], dict): - if "meta" in item[1].keys(): - continue - wencai_res.append({"content": pd.DataFrame.from_dict(item[1], orient='index').to_markdown()}) - continue - if isinstance(item[1], pd.DataFrame): - if "image_url" in item[1].columns: - continue - wencai_res.append({"content": item[1].to_markdown()}) - continue - - wencai_res.append({"content": item[0] + "\n" + str(item[1])}) - except Exception as e: - return WenCai.be_output("**ERROR**: " + str(e)) - - if not wencai_res: - return WenCai.be_output("") - - return pd.DataFrame(wencai_res) +# +# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +from abc import ABC +import pandas as pd +import pywencai +from agent.component.base import ComponentBase, ComponentParamBase + + +class WenCaiParam(ComponentParamBase): + """ + Define the WenCai component parameters. + """ + + def __init__(self): + super().__init__() + self.top_n = 10 + self.query_type = "stock" + + def check(self): + self.check_positive_integer(self.top_n, "Top N") + self.check_valid_value(self.query_type, "Query type", + ['stock', 'zhishu', 'fund', 'hkstock', 'usstock', 'threeboard', 'conbond', 'insurance', + 'futures', 'lccp', + 'foreign_exchange']) + + +class WenCai(ComponentBase, ABC): + component_name = "WenCai" + + def _run(self, history, **kwargs): + ans = self.get_input() + ans = ",".join(ans["content"]) if "content" in ans else "" + if not ans: + return WenCai.be_output("") + + try: + wencai_res = [] + res = pywencai.get(query=ans, query_type=self._param.query_type, perpage=self._param.top_n) + if isinstance(res, pd.DataFrame): + wencai_res.append({"content": res.to_markdown()}) + if isinstance(res, dict): + for item in res.items(): + if isinstance(item[1], list): + wencai_res.append({"content": item[0] + "\n" + pd.DataFrame(item[1]).to_markdown()}) + continue + if isinstance(item[1], str): + wencai_res.append({"content": item[0] + "\n" + item[1]}) + continue + if isinstance(item[1], dict): + if "meta" in item[1].keys(): + continue + wencai_res.append({"content": pd.DataFrame.from_dict(item[1], orient='index').to_markdown()}) + continue + if isinstance(item[1], pd.DataFrame): + if "image_url" in item[1].columns: + continue + wencai_res.append({"content": item[1].to_markdown()}) + continue + + wencai_res.append({"content": item[0] + "\n" + str(item[1])}) + except Exception as e: + return WenCai.be_output("**ERROR**: " + str(e)) + + if not wencai_res: + return WenCai.be_output("") + + return pd.DataFrame(wencai_res) diff --git a/agent/component/yahoofinance.py b/agent/component/yahoofinance.py index ac932bc68..f31c7aed4 100644 --- a/agent/component/yahoofinance.py +++ b/agent/component/yahoofinance.py @@ -1,84 +1,84 @@ -# -# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -import logging -from abc import ABC -import pandas as pd -from agent.component.base import ComponentBase, ComponentParamBase -import yfinance as yf - - -class YahooFinanceParam(ComponentParamBase): - """ - Define the YahooFinance component parameters. - """ - - def __init__(self): - super().__init__() - self.info = True - self.history = False - self.count = False - self.financials = False - self.income_stmt = False - self.balance_sheet = False - self.cash_flow_statement = False - self.news = True - - def check(self): - self.check_boolean(self.info, "get all stock info") - self.check_boolean(self.history, "get historical market data") - self.check_boolean(self.count, "show share count") - self.check_boolean(self.financials, "show financials") - self.check_boolean(self.income_stmt, "income statement") - self.check_boolean(self.balance_sheet, "balance sheet") - self.check_boolean(self.cash_flow_statement, "cash flow statement") - self.check_boolean(self.news, "show news") - - -class YahooFinance(ComponentBase, ABC): - component_name = "YahooFinance" - - def _run(self, history, **kwargs): - ans = self.get_input() - ans = "".join(ans["content"]) if "content" in ans else "" - if not ans: - return YahooFinance.be_output("") - - yohoo_res = [] - try: - msft = yf.Ticker(ans) - if self._param.info: - yohoo_res.append({"content": "info:\n" + pd.Series(msft.info).to_markdown() + "\n"}) - if self._param.history: - yohoo_res.append({"content": "history:\n" + msft.history().to_markdown() + "\n"}) - if self._param.financials: - yohoo_res.append({"content": "calendar:\n" + pd.DataFrame(msft.calendar).to_markdown() + "\n"}) - if self._param.balance_sheet: - yohoo_res.append({"content": "balance sheet:\n" + msft.balance_sheet.to_markdown() + "\n"}) - yohoo_res.append( - {"content": "quarterly balance sheet:\n" + msft.quarterly_balance_sheet.to_markdown() + "\n"}) - if self._param.cash_flow_statement: - yohoo_res.append({"content": "cash flow statement:\n" + msft.cashflow.to_markdown() + "\n"}) - yohoo_res.append( - {"content": "quarterly cash flow statement:\n" + msft.quarterly_cashflow.to_markdown() + "\n"}) - if self._param.news: - yohoo_res.append({"content": "news:\n" + pd.DataFrame(msft.news).to_markdown() + "\n"}) - except Exception: - logging.exception("YahooFinance got exception") - - if not yohoo_res: - return YahooFinance.be_output("") - - return pd.DataFrame(yohoo_res) +# +# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +import logging +from abc import ABC +import pandas as pd +from agent.component.base import ComponentBase, ComponentParamBase +import yfinance as yf + + +class YahooFinanceParam(ComponentParamBase): + """ + Define the YahooFinance component parameters. + """ + + def __init__(self): + super().__init__() + self.info = True + self.history = False + self.count = False + self.financials = False + self.income_stmt = False + self.balance_sheet = False + self.cash_flow_statement = False + self.news = True + + def check(self): + self.check_boolean(self.info, "get all stock info") + self.check_boolean(self.history, "get historical market data") + self.check_boolean(self.count, "show share count") + self.check_boolean(self.financials, "show financials") + self.check_boolean(self.income_stmt, "income statement") + self.check_boolean(self.balance_sheet, "balance sheet") + self.check_boolean(self.cash_flow_statement, "cash flow statement") + self.check_boolean(self.news, "show news") + + +class YahooFinance(ComponentBase, ABC): + component_name = "YahooFinance" + + def _run(self, history, **kwargs): + ans = self.get_input() + ans = "".join(ans["content"]) if "content" in ans else "" + if not ans: + return YahooFinance.be_output("") + + yohoo_res = [] + try: + msft = yf.Ticker(ans) + if self._param.info: + yohoo_res.append({"content": "info:\n" + pd.Series(msft.info).to_markdown() + "\n"}) + if self._param.history: + yohoo_res.append({"content": "history:\n" + msft.history().to_markdown() + "\n"}) + if self._param.financials: + yohoo_res.append({"content": "calendar:\n" + pd.DataFrame(msft.calendar).to_markdown() + "\n"}) + if self._param.balance_sheet: + yohoo_res.append({"content": "balance sheet:\n" + msft.balance_sheet.to_markdown() + "\n"}) + yohoo_res.append( + {"content": "quarterly balance sheet:\n" + msft.quarterly_balance_sheet.to_markdown() + "\n"}) + if self._param.cash_flow_statement: + yohoo_res.append({"content": "cash flow statement:\n" + msft.cashflow.to_markdown() + "\n"}) + yohoo_res.append( + {"content": "quarterly cash flow statement:\n" + msft.quarterly_cashflow.to_markdown() + "\n"}) + if self._param.news: + yohoo_res.append({"content": "news:\n" + pd.DataFrame(msft.news).to_markdown() + "\n"}) + except Exception: + logging.exception("YahooFinance got exception") + + if not yohoo_res: + return YahooFinance.be_output("") + + return pd.DataFrame(yohoo_res) diff --git a/agent/templates/investment_advisor.json b/agent/templates/investment_advisor.json index 908c5dd8a..e920aadda 100644 --- a/agent/templates/investment_advisor.json +++ b/agent/templates/investment_advisor.json @@ -1,571 +1,571 @@ -{ - "id": 8, - "title": "Intelligent investment advisor", - "description": "An intelligent investment advisor that answers your financial questions using real-time domestic financial data.", - "canvas_type": "chatbot", - "dsl": { - "answer": [], - "components": { - "begin": { - "obj": { - "component_name": "Begin", - "params": { - "prologue": "Hi there!" - } - }, - "downstream": [ - "Answer:NeatLandsWave" - ], - "upstream": [] - }, - "WenCai:TenParksOpen": { - "obj": { - "component_name": "WenCai", - "params": { - "query_type": "stock", - "top_n": 5 - } - }, - "downstream": [ - "Generate:RottenPianosUnite" - ], - "upstream": [ - "Answer:NeatLandsWave" - ] - }, - "AkShare:CalmHotelsKnow": { - "obj": { - "component_name": "AkShare", - "params": { - "top_n": 10 - } - }, - "downstream": [ - "Generate:RottenPianosUnite" - ], - "upstream": [ - "KeywordExtract:BreezyGoatsRead" - ] - }, - "Answer:NeatLandsWave": { - "obj": { - "component_name": "Answer", - "params": {} - }, - "downstream": [ - "WenCai:TenParksOpen", - "KeywordExtract:BreezyGoatsRead" - ], - "upstream": [ - "begin", - "Generate:RottenPianosUnite" - ] - }, - "Generate:RottenPianosUnite": { - "obj": { - "component_name": "Generate", - "params": { - "cite": true, - "frequency_penalty": 0.7, - "llm_id": "deepseek-chat@DeepSeek", - "max_tokens": 256, - "message_history_window_size": 0, - "parameters": [ - { - "component_id": "WenCai:TenParksOpen", - "id": "d35f331b-2787-4ae7-ab81-a7ea15970843", - "key": "wencai_input" - }, - { - "component_id": "AkShare:CalmHotelsKnow", - "id": "36c4db0b-c80d-4119-a2a6-05ed9f7efbc9", - "key": "ak_input" - } - ], - "presence_penalty": 0.4, - "prompt": "Role: You are a professional financial counseling assistant.\n\nTask: Answer user's question based on content provided by Wencai and AkShare.\n\nNotice:\n- Output no more than 5 news items from AkShare if there's content provided by Wencai.\n- Items from AkShare MUST have a corresponding URL link.\n\n############\nContent provided by Wencai: \n{wencai_input}\n\n################\nContent provided by AkShare: \n{ak_input}", - "temperature": 0.1, - "top_p": 0.3 - } - }, - "downstream": [ - "Answer:NeatLandsWave" - ], - "upstream": [ - "WenCai:TenParksOpen", - "AkShare:CalmHotelsKnow" - ] - }, - "KeywordExtract:BreezyGoatsRead": { - "obj": { - "component_name": "KeywordExtract", - "params": { - "frequencyPenaltyEnabled": true, - "frequency_penalty": 0.7, - "llm_id": "deepseek-chat@DeepSeek", - "maxTokensEnabled": true, - "max_tokens": 256, - "parameter": "Precise", - "presencePenaltyEnabled": true, - "presence_penalty": 0.4, - "temperature": 0.1, - "temperatureEnabled": true, - "topPEnabled": true, - "top_n": 2, - "top_p": 0.3 - } - }, - "downstream": [ - "AkShare:CalmHotelsKnow" - ], - "upstream": [ - "Answer:NeatLandsWave" - ] - } - }, - "graph": { - "nodes": [ - { - "data": { - "form": { - "prologue": "Hi there!" - }, - "label": "Begin", - "name": "Opening" - }, - "dragging": false, - "height": 44, - "id": "begin", - "position": { - "x": -521.8118264317484, - "y": -27.999467037576665 - }, - "positionAbsolute": { - "x": -521.8118264317484, - "y": -27.999467037576665 - }, - "selected": false, - "sourcePosition": "left", - "targetPosition": "right", - "type": "beginNode", - "width": 100 - }, - { - "data": { - "form": { - "query_type": "stock", - "top_n": 5 - }, - "label": "WenCai", - "name": "Wencai" - }, - "dragging": false, - "height": 44, - "id": "WenCai:TenParksOpen", - "position": { - "x": -13.030801663267397, - "y": -30.557141660610256 - }, - "positionAbsolute": { - "x": -13.030801663267397, - "y": -30.557141660610256 - }, - "selected": false, - "sourcePosition": "right", - "targetPosition": "left", - "type": "ragNode", - "width": 200 - }, - { - "data": { - "form": { - "top_n": 10 - }, - "label": "AkShare", - "name": "AKShare" - }, - "dragging": false, - "height": 44, - "id": "AkShare:CalmHotelsKnow", - "position": { - "x": 267.17349571786156, - "y": 100.01281266803943 - }, - "positionAbsolute": { - "x": 267.17349571786156, - "y": 100.01281266803943 - }, - "selected": false, - "sourcePosition": "right", - "targetPosition": "left", - "type": "ragNode", - "width": 200 - }, - { - "data": { - "form": {}, - "label": "Answer", - "name": "Interact" - }, - "dragging": false, - "height": 44, - "id": "Answer:NeatLandsWave", - "position": { - "x": -304.0612563145512, - "y": -29.054278091837944 - }, - "positionAbsolute": { - "x": -304.0612563145512, - "y": -29.054278091837944 - }, - "selected": false, - "sourcePosition": "right", - "targetPosition": "left", - "type": "logicNode", - "width": 200 - }, - { - "data": { - "form": { - "cite": true, - "frequencyPenaltyEnabled": true, - "frequency_penalty": 0.7, - "llm_id": "deepseek-chat@DeepSeek", - "maxTokensEnabled": true, - "max_tokens": 256, - "message_history_window_size": 0, - "parameter": "Precise", - "parameters": [ - { - "component_id": "WenCai:TenParksOpen", - "id": "d35f331b-2787-4ae7-ab81-a7ea15970843", - "key": "wencai_input" - }, - { - "component_id": "AkShare:CalmHotelsKnow", - "id": "36c4db0b-c80d-4119-a2a6-05ed9f7efbc9", - "key": "ak_input" - } - ], - "presencePenaltyEnabled": true, - "presence_penalty": 0.4, - "prompt": "Role: You are a professional financial counseling assistant.\n\nTask: Answer user's question based on content provided by Wencai and AkShare.\n\nNotice:\n- Output no more than 5 news items from AkShare if there's content provided by Wencai.\n- Items from AkShare MUST have a corresponding URL link.\n\n############\nContent provided by Wencai: \n{wencai_input}\n\n################\nContent provided by AkShare: \n{ak_input}", - "temperature": 0.1, - "temperatureEnabled": true, - "topPEnabled": true, - "top_p": 0.3 - }, - "label": "Generate", - "name": "LLM" - }, - "dragging": false, - "height": 170, - "id": "Generate:RottenPianosUnite", - "position": { - "x": -16.477598988611703, - "y": -251.90091743639417 - }, - "positionAbsolute": { - "x": -16.477598988611703, - "y": -251.90091743639417 - }, - "selected": false, - "sourcePosition": "right", - "targetPosition": "left", - "type": "generateNode", - "width": 200 - }, - { - "data": { - "form": { - "frequencyPenaltyEnabled": true, - "frequency_penalty": 0.7, - "llm_id": "deepseek-chat@DeepSeek", - "maxTokensEnabled": true, - "max_tokens": 256, - "parameter": "Precise", - "presencePenaltyEnabled": true, - "presence_penalty": 0.4, - "temperature": 0.1, - "temperatureEnabled": true, - "topPEnabled": true, - "top_n": 2, - "top_p": 0.3 - }, - "label": "KeywordExtract", - "name": "Keywords" - }, - "dragging": false, - "height": 86, - "id": "KeywordExtract:BreezyGoatsRead", - "position": { - "x": -17.690374759999543, - "y": 80.39964392387697 - }, - "positionAbsolute": { - "x": -17.690374759999543, - "y": 80.39964392387697 - }, - "selected": false, - "sourcePosition": "right", - "targetPosition": "left", - "type": "keywordNode", - "width": 200 - }, - { - "data": { - "form": { - "text": "Receives the user's financial inquiries and displays the large model's response to financial questions." - }, - "label": "Note", - "name": "N: Interact" - }, - "dragging": false, - "height": 162, - "id": "Note:FuzzyPoetsLearn", - "position": { - "x": -296.5982116419186, - "y": 38.77567426067935 - }, - "positionAbsolute": { - "x": -296.5982116419186, - "y": 38.77567426067935 - }, - "resizing": false, - "selected": false, - "sourcePosition": "right", - "style": { - "height": 162, - "width": 214 - }, - "targetPosition": "left", - "type": "noteNode", - "width": 214, - "dragHandle": ".note-drag-handle" - }, - { - "data": { - "form": { - "text": "Extracts keywords based on the user's financial questions for better retrieval." - }, - "label": "Note", - "name": "N: Keywords" - }, - "dragging": false, - "height": 155, - "id": "Note:FlatBagsRun", - "position": { - "x": -14.82895160277127, - "y": 186.52508153680787 - }, - "positionAbsolute": { - "x": -14.82895160277127, - "y": 186.52508153680787 - }, - "resizing": false, - "selected": false, - "sourcePosition": "right", - "style": { - "height": 155, - "width": 213 - }, - "targetPosition": "left", - "type": "noteNode", - "width": 213, - "dragHandle": ".note-drag-handle" - }, - { - "data": { - "form": { - "text": "Searches on akshare for the latest news about economics based on the keywords and returns the results." - }, - "label": "Note", - "name": "N: AKShare" - }, - "dragging": false, - "height": 128, - "id": "Note:WarmClothsSort", - "position": { - "x": 573.7653319987893, - "y": 102.64512355369035 - }, - "positionAbsolute": { - "x": 573.7653319987893, - "y": 102.64512355369035 - }, - "resizing": false, - "selected": false, - "sourcePosition": "right", - "style": { - "height": 128, - "width": 283 - }, - "targetPosition": "left", - "type": "noteNode", - "width": 283, - "dragHandle": ".note-drag-handle" - }, - { - "data": { - "form": { - "text": "Searches by Wencai to select stocks that satisfy user mentioned conditions." - }, - "label": "Note", - "name": "N: Wencai" - }, - "dragging": false, - "height": 128, - "id": "Note:TiredReadersWash", - "position": { - "x": 571.4274792499875, - "y": -37.07105560150117 - }, - "positionAbsolute": { - "x": 571.4274792499875, - "y": -37.07105560150117 - }, - "resizing": false, - "selected": false, - "sourcePosition": "right", - "style": { - "height": 128, - "width": 285 - }, - "targetPosition": "left", - "type": "noteNode", - "width": 285, - "dragHandle": ".note-drag-handle" - }, - { - "data": { - "form": { - "text": "The large model answers the user's medical health questions based on the searched and retrieved content." - }, - "label": "Note", - "name": "N: LLM" - }, - "dragging": false, - "height": 163, - "id": "Note:TameBoatsType", - "position": { - "x": -7.849538042569293, - "y": -427.90526378748035 - }, - "positionAbsolute": { - "x": -7.849538042569293, - "y": -427.90526378748035 - }, - "resizing": false, - "selected": false, - "sourcePosition": "right", - "style": { - "height": 163, - "width": 212 - }, - "targetPosition": "left", - "type": "noteNode", - "width": 212, - "dragHandle": ".note-drag-handle" - } - ], - "edges": [ - { - "id": "reactflow__edge-begin-Answer:NeatLandsWavec", - "markerEnd": "logo", - "source": "begin", - "sourceHandle": null, - "style": { - "stroke": "rgb(202 197 245)", - "strokeWidth": 2 - }, - "target": "Answer:NeatLandsWave", - "targetHandle": "c", - "type": "buttonEdge" - }, - { - "id": "reactflow__edge-Answer:NeatLandsWaveb-WenCai:TenParksOpenc", - "markerEnd": "logo", - "source": "Answer:NeatLandsWave", - "sourceHandle": "b", - "style": { - "stroke": "rgb(202 197 245)", - "strokeWidth": 2 - }, - "target": "WenCai:TenParksOpen", - "targetHandle": "c", - "type": "buttonEdge" - }, - { - "id": "reactflow__edge-KeywordExtract:BreezyGoatsReadb-AkShare:CalmHotelsKnowc", - "markerEnd": "logo", - "source": "KeywordExtract:BreezyGoatsRead", - "sourceHandle": "b", - "style": { - "stroke": "rgb(202 197 245)", - "strokeWidth": 2 - }, - "target": "AkShare:CalmHotelsKnow", - "targetHandle": "c", - "type": "buttonEdge" - }, - { - "id": "reactflow__edge-WenCai:TenParksOpenb-Generate:RottenPianosUniteb", - "markerEnd": "logo", - "source": "WenCai:TenParksOpen", - "sourceHandle": "b", - "style": { - "stroke": "rgb(202 197 245)", - "strokeWidth": 2 - }, - "target": "Generate:RottenPianosUnite", - "targetHandle": "b", - "type": "buttonEdge" - }, - { - "id": "reactflow__edge-AkShare:CalmHotelsKnowb-Generate:RottenPianosUniteb", - "markerEnd": "logo", - "source": "AkShare:CalmHotelsKnow", - "sourceHandle": "b", - "style": { - "stroke": "rgb(202 197 245)", - "strokeWidth": 2 - }, - "target": "Generate:RottenPianosUnite", - "targetHandle": "b", - "type": "buttonEdge" - }, - { - "id": "reactflow__edge-Generate:RottenPianosUnitec-Answer:NeatLandsWavec", - "markerEnd": "logo", - "source": "Generate:RottenPianosUnite", - "sourceHandle": "c", - "style": { - "stroke": "rgb(202 197 245)", - "strokeWidth": 2 - }, - "target": "Answer:NeatLandsWave", - "targetHandle": "c", - "type": "buttonEdge" - }, - { - "id": "reactflow__edge-Answer:NeatLandsWaveb-KeywordExtract:BreezyGoatsReadc", - "markerEnd": "logo", - "source": "Answer:NeatLandsWave", - "sourceHandle": "b", - "style": { - "stroke": "rgb(202 197 245)", - "strokeWidth": 2 - }, - "target": "KeywordExtract:BreezyGoatsRead", - "targetHandle": "c", - "type": "buttonEdge" - } - ] - }, - "history": [], - "messages": [], - "path": [], - "reference": [] - }, - "avatar": "" -} +{ + "id": 8, + "title": "Intelligent investment advisor", + "description": "An intelligent investment advisor that answers your financial questions using real-time domestic financial data.", + "canvas_type": "chatbot", + "dsl": { + "answer": [], + "components": { + "begin": { + "obj": { + "component_name": "Begin", + "params": { + "prologue": "Hi there!" + } + }, + "downstream": [ + "Answer:NeatLandsWave" + ], + "upstream": [] + }, + "WenCai:TenParksOpen": { + "obj": { + "component_name": "WenCai", + "params": { + "query_type": "stock", + "top_n": 5 + } + }, + "downstream": [ + "Generate:RottenPianosUnite" + ], + "upstream": [ + "Answer:NeatLandsWave" + ] + }, + "AkShare:CalmHotelsKnow": { + "obj": { + "component_name": "AkShare", + "params": { + "top_n": 10 + } + }, + "downstream": [ + "Generate:RottenPianosUnite" + ], + "upstream": [ + "KeywordExtract:BreezyGoatsRead" + ] + }, + "Answer:NeatLandsWave": { + "obj": { + "component_name": "Answer", + "params": {} + }, + "downstream": [ + "WenCai:TenParksOpen", + "KeywordExtract:BreezyGoatsRead" + ], + "upstream": [ + "begin", + "Generate:RottenPianosUnite" + ] + }, + "Generate:RottenPianosUnite": { + "obj": { + "component_name": "Generate", + "params": { + "cite": true, + "frequency_penalty": 0.7, + "llm_id": "deepseek-chat@DeepSeek", + "max_tokens": 256, + "message_history_window_size": 0, + "parameters": [ + { + "component_id": "WenCai:TenParksOpen", + "id": "d35f331b-2787-4ae7-ab81-a7ea15970843", + "key": "wencai_input" + }, + { + "component_id": "AkShare:CalmHotelsKnow", + "id": "36c4db0b-c80d-4119-a2a6-05ed9f7efbc9", + "key": "ak_input" + } + ], + "presence_penalty": 0.4, + "prompt": "Role: You are a professional financial counseling assistant.\n\nTask: Answer user's question based on content provided by Wencai and AkShare.\n\nNotice:\n- Output no more than 5 news items from AkShare if there's content provided by Wencai.\n- Items from AkShare MUST have a corresponding URL link.\n\n############\nContent provided by Wencai: \n{wencai_input}\n\n################\nContent provided by AkShare: \n{ak_input}", + "temperature": 0.1, + "top_p": 0.3 + } + }, + "downstream": [ + "Answer:NeatLandsWave" + ], + "upstream": [ + "WenCai:TenParksOpen", + "AkShare:CalmHotelsKnow" + ] + }, + "KeywordExtract:BreezyGoatsRead": { + "obj": { + "component_name": "KeywordExtract", + "params": { + "frequencyPenaltyEnabled": true, + "frequency_penalty": 0.7, + "llm_id": "deepseek-chat@DeepSeek", + "maxTokensEnabled": true, + "max_tokens": 256, + "parameter": "Precise", + "presencePenaltyEnabled": true, + "presence_penalty": 0.4, + "temperature": 0.1, + "temperatureEnabled": true, + "topPEnabled": true, + "top_n": 2, + "top_p": 0.3 + } + }, + "downstream": [ + "AkShare:CalmHotelsKnow" + ], + "upstream": [ + "Answer:NeatLandsWave" + ] + } + }, + "graph": { + "nodes": [ + { + "data": { + "form": { + "prologue": "Hi there!" + }, + "label": "Begin", + "name": "Opening" + }, + "dragging": false, + "height": 44, + "id": "begin", + "position": { + "x": -521.8118264317484, + "y": -27.999467037576665 + }, + "positionAbsolute": { + "x": -521.8118264317484, + "y": -27.999467037576665 + }, + "selected": false, + "sourcePosition": "left", + "targetPosition": "right", + "type": "beginNode", + "width": 100 + }, + { + "data": { + "form": { + "query_type": "stock", + "top_n": 5 + }, + "label": "WenCai", + "name": "Wencai" + }, + "dragging": false, + "height": 44, + "id": "WenCai:TenParksOpen", + "position": { + "x": -13.030801663267397, + "y": -30.557141660610256 + }, + "positionAbsolute": { + "x": -13.030801663267397, + "y": -30.557141660610256 + }, + "selected": false, + "sourcePosition": "right", + "targetPosition": "left", + "type": "ragNode", + "width": 200 + }, + { + "data": { + "form": { + "top_n": 10 + }, + "label": "AkShare", + "name": "AKShare" + }, + "dragging": false, + "height": 44, + "id": "AkShare:CalmHotelsKnow", + "position": { + "x": 267.17349571786156, + "y": 100.01281266803943 + }, + "positionAbsolute": { + "x": 267.17349571786156, + "y": 100.01281266803943 + }, + "selected": false, + "sourcePosition": "right", + "targetPosition": "left", + "type": "ragNode", + "width": 200 + }, + { + "data": { + "form": {}, + "label": "Answer", + "name": "Interact" + }, + "dragging": false, + "height": 44, + "id": "Answer:NeatLandsWave", + "position": { + "x": -304.0612563145512, + "y": -29.054278091837944 + }, + "positionAbsolute": { + "x": -304.0612563145512, + "y": -29.054278091837944 + }, + "selected": false, + "sourcePosition": "right", + "targetPosition": "left", + "type": "logicNode", + "width": 200 + }, + { + "data": { + "form": { + "cite": true, + "frequencyPenaltyEnabled": true, + "frequency_penalty": 0.7, + "llm_id": "deepseek-chat@DeepSeek", + "maxTokensEnabled": true, + "max_tokens": 256, + "message_history_window_size": 0, + "parameter": "Precise", + "parameters": [ + { + "component_id": "WenCai:TenParksOpen", + "id": "d35f331b-2787-4ae7-ab81-a7ea15970843", + "key": "wencai_input" + }, + { + "component_id": "AkShare:CalmHotelsKnow", + "id": "36c4db0b-c80d-4119-a2a6-05ed9f7efbc9", + "key": "ak_input" + } + ], + "presencePenaltyEnabled": true, + "presence_penalty": 0.4, + "prompt": "Role: You are a professional financial counseling assistant.\n\nTask: Answer user's question based on content provided by Wencai and AkShare.\n\nNotice:\n- Output no more than 5 news items from AkShare if there's content provided by Wencai.\n- Items from AkShare MUST have a corresponding URL link.\n\n############\nContent provided by Wencai: \n{wencai_input}\n\n################\nContent provided by AkShare: \n{ak_input}", + "temperature": 0.1, + "temperatureEnabled": true, + "topPEnabled": true, + "top_p": 0.3 + }, + "label": "Generate", + "name": "LLM" + }, + "dragging": false, + "height": 170, + "id": "Generate:RottenPianosUnite", + "position": { + "x": -16.477598988611703, + "y": -251.90091743639417 + }, + "positionAbsolute": { + "x": -16.477598988611703, + "y": -251.90091743639417 + }, + "selected": false, + "sourcePosition": "right", + "targetPosition": "left", + "type": "generateNode", + "width": 200 + }, + { + "data": { + "form": { + "frequencyPenaltyEnabled": true, + "frequency_penalty": 0.7, + "llm_id": "deepseek-chat@DeepSeek", + "maxTokensEnabled": true, + "max_tokens": 256, + "parameter": "Precise", + "presencePenaltyEnabled": true, + "presence_penalty": 0.4, + "temperature": 0.1, + "temperatureEnabled": true, + "topPEnabled": true, + "top_n": 2, + "top_p": 0.3 + }, + "label": "KeywordExtract", + "name": "Keywords" + }, + "dragging": false, + "height": 86, + "id": "KeywordExtract:BreezyGoatsRead", + "position": { + "x": -17.690374759999543, + "y": 80.39964392387697 + }, + "positionAbsolute": { + "x": -17.690374759999543, + "y": 80.39964392387697 + }, + "selected": false, + "sourcePosition": "right", + "targetPosition": "left", + "type": "keywordNode", + "width": 200 + }, + { + "data": { + "form": { + "text": "Receives the user's financial inquiries and displays the large model's response to financial questions." + }, + "label": "Note", + "name": "N: Interact" + }, + "dragging": false, + "height": 162, + "id": "Note:FuzzyPoetsLearn", + "position": { + "x": -296.5982116419186, + "y": 38.77567426067935 + }, + "positionAbsolute": { + "x": -296.5982116419186, + "y": 38.77567426067935 + }, + "resizing": false, + "selected": false, + "sourcePosition": "right", + "style": { + "height": 162, + "width": 214 + }, + "targetPosition": "left", + "type": "noteNode", + "width": 214, + "dragHandle": ".note-drag-handle" + }, + { + "data": { + "form": { + "text": "Extracts keywords based on the user's financial questions for better retrieval." + }, + "label": "Note", + "name": "N: Keywords" + }, + "dragging": false, + "height": 155, + "id": "Note:FlatBagsRun", + "position": { + "x": -14.82895160277127, + "y": 186.52508153680787 + }, + "positionAbsolute": { + "x": -14.82895160277127, + "y": 186.52508153680787 + }, + "resizing": false, + "selected": false, + "sourcePosition": "right", + "style": { + "height": 155, + "width": 213 + }, + "targetPosition": "left", + "type": "noteNode", + "width": 213, + "dragHandle": ".note-drag-handle" + }, + { + "data": { + "form": { + "text": "Searches on akshare for the latest news about economics based on the keywords and returns the results." + }, + "label": "Note", + "name": "N: AKShare" + }, + "dragging": false, + "height": 128, + "id": "Note:WarmClothsSort", + "position": { + "x": 573.7653319987893, + "y": 102.64512355369035 + }, + "positionAbsolute": { + "x": 573.7653319987893, + "y": 102.64512355369035 + }, + "resizing": false, + "selected": false, + "sourcePosition": "right", + "style": { + "height": 128, + "width": 283 + }, + "targetPosition": "left", + "type": "noteNode", + "width": 283, + "dragHandle": ".note-drag-handle" + }, + { + "data": { + "form": { + "text": "Searches by Wencai to select stocks that satisfy user mentioned conditions." + }, + "label": "Note", + "name": "N: Wencai" + }, + "dragging": false, + "height": 128, + "id": "Note:TiredReadersWash", + "position": { + "x": 571.4274792499875, + "y": -37.07105560150117 + }, + "positionAbsolute": { + "x": 571.4274792499875, + "y": -37.07105560150117 + }, + "resizing": false, + "selected": false, + "sourcePosition": "right", + "style": { + "height": 128, + "width": 285 + }, + "targetPosition": "left", + "type": "noteNode", + "width": 285, + "dragHandle": ".note-drag-handle" + }, + { + "data": { + "form": { + "text": "The large model answers the user's medical health questions based on the searched and retrieved content." + }, + "label": "Note", + "name": "N: LLM" + }, + "dragging": false, + "height": 163, + "id": "Note:TameBoatsType", + "position": { + "x": -7.849538042569293, + "y": -427.90526378748035 + }, + "positionAbsolute": { + "x": -7.849538042569293, + "y": -427.90526378748035 + }, + "resizing": false, + "selected": false, + "sourcePosition": "right", + "style": { + "height": 163, + "width": 212 + }, + "targetPosition": "left", + "type": "noteNode", + "width": 212, + "dragHandle": ".note-drag-handle" + } + ], + "edges": [ + { + "id": "reactflow__edge-begin-Answer:NeatLandsWavec", + "markerEnd": "logo", + "source": "begin", + "sourceHandle": null, + "style": { + "stroke": "rgb(202 197 245)", + "strokeWidth": 2 + }, + "target": "Answer:NeatLandsWave", + "targetHandle": "c", + "type": "buttonEdge" + }, + { + "id": "reactflow__edge-Answer:NeatLandsWaveb-WenCai:TenParksOpenc", + "markerEnd": "logo", + "source": "Answer:NeatLandsWave", + "sourceHandle": "b", + "style": { + "stroke": "rgb(202 197 245)", + "strokeWidth": 2 + }, + "target": "WenCai:TenParksOpen", + "targetHandle": "c", + "type": "buttonEdge" + }, + { + "id": "reactflow__edge-KeywordExtract:BreezyGoatsReadb-AkShare:CalmHotelsKnowc", + "markerEnd": "logo", + "source": "KeywordExtract:BreezyGoatsRead", + "sourceHandle": "b", + "style": { + "stroke": "rgb(202 197 245)", + "strokeWidth": 2 + }, + "target": "AkShare:CalmHotelsKnow", + "targetHandle": "c", + "type": "buttonEdge" + }, + { + "id": "reactflow__edge-WenCai:TenParksOpenb-Generate:RottenPianosUniteb", + "markerEnd": "logo", + "source": "WenCai:TenParksOpen", + "sourceHandle": "b", + "style": { + "stroke": "rgb(202 197 245)", + "strokeWidth": 2 + }, + "target": "Generate:RottenPianosUnite", + "targetHandle": "b", + "type": "buttonEdge" + }, + { + "id": "reactflow__edge-AkShare:CalmHotelsKnowb-Generate:RottenPianosUniteb", + "markerEnd": "logo", + "source": "AkShare:CalmHotelsKnow", + "sourceHandle": "b", + "style": { + "stroke": "rgb(202 197 245)", + "strokeWidth": 2 + }, + "target": "Generate:RottenPianosUnite", + "targetHandle": "b", + "type": "buttonEdge" + }, + { + "id": "reactflow__edge-Generate:RottenPianosUnitec-Answer:NeatLandsWavec", + "markerEnd": "logo", + "source": "Generate:RottenPianosUnite", + "sourceHandle": "c", + "style": { + "stroke": "rgb(202 197 245)", + "strokeWidth": 2 + }, + "target": "Answer:NeatLandsWave", + "targetHandle": "c", + "type": "buttonEdge" + }, + { + "id": "reactflow__edge-Answer:NeatLandsWaveb-KeywordExtract:BreezyGoatsReadc", + "markerEnd": "logo", + "source": "Answer:NeatLandsWave", + "sourceHandle": "b", + "style": { + "stroke": "rgb(202 197 245)", + "strokeWidth": 2 + }, + "target": "KeywordExtract:BreezyGoatsRead", + "targetHandle": "c", + "type": "buttonEdge" + } + ] + }, + "history": [], + "messages": [], + "path": [], + "reference": [] + }, + "avatar": "" +} diff --git a/agent/templates/text2sql.json b/agent/templates/text2sql.json index cf6dd5307..c5a62d192 100644 --- a/agent/templates/text2sql.json +++ b/agent/templates/text2sql.json @@ -1,585 +1,585 @@ -{ - "id": 5, - "title": "Text To SQL", - "description": "An agent that converts user queries into SQL statements. You must prepare three knowledge bases: 1: DDL for your database; 2: Examples of user queries converted to SQL statements; 3: A comprehensive description of your database, including but not limited to tables and records.", - "canvas_type": "chatbot", - "dsl": { - "answer": [], - "components": { - "begin": { - "obj": { - "component_name": "Begin", - "params": {} - }, - "downstream": [ - "Answer:SocialAdsWonder" - ], - "upstream": [] - }, - "Answer:SocialAdsWonder": { - "obj": { - "component_name": "Answer", - "params": {} - }, - "downstream": [ - "Retrieval:TrueCornersJam", - "Retrieval:EasyDryersShop", - "Retrieval:LazyChefsWatch" - ], - "upstream": [ - "begin", - "Generate:RareSymbolsGrin" - ] - }, - "Retrieval:TrueCornersJam": { - "obj": { - "component_name": "Retrieval", - "params": { - "empty_response": "Nothing found in DDL!", - "kb_ids": [], - "keywords_similarity_weight": 0.3, - "similarity_threshold": 0.02, - "top_n": 8 - } - }, - "downstream": [ - "Generate:RareSymbolsGrin" - ], - "upstream": [ - "Answer:SocialAdsWonder" - ] - }, - "Retrieval:EasyDryersShop": { - "obj": { - "component_name": "Retrieval", - "params": { - "empty_response": "Nothing found in Q-SQL!", - "kb_ids": [], - "keywords_similarity_weight": 0.3, - "similarity_threshold": 0.2, - "top_n": 8 - } - }, - "downstream": [ - "Generate:RareSymbolsGrin" - ], - "upstream": [ - "Answer:SocialAdsWonder" - ] - }, - "Retrieval:LazyChefsWatch": { - "obj": { - "component_name": "Retrieval", - "params": { - "empty_response": "Nothing found in DB-Description!", - "kb_ids": [], - "keywords_similarity_weight": 0.3, - "similarity_threshold": 0.2, - "top_n": 8 - } - }, - "downstream": [ - "Generate:RareSymbolsGrin" - ], - "upstream": [ - "Answer:SocialAdsWonder" - ] - }, - "Generate:RareSymbolsGrin": { - "obj": { - "component_name": "Generate", - "params": { - "cite": true, - "frequency_penalty": 0.7, - "llm_id": "deepseek-chat@DeepSeek", - "max_tokens": 256, - "message_history_window_size": 12, - "parameters": [ - { - "component_id": "Retrieval:TrueCornersJam", - "id": "78644673-9236-4605-8110-59705fc38784", - "key": "ddl_input" - }, - { - "component_id": "Retrieval:LazyChefsWatch", - "id": "afbf91ce-6f58-4573-b02d-9a4973f124f4", - "key": "db_input" - }, - { - "component_id": "Retrieval:EasyDryersShop", - "id": "ee2b84f4-1cf5-43be-80e6-60bfaea3d834", - "key": "sql_input" - } - ], - "presence_penalty": 0.4, - "prompt": "##The user provides a question and you provide SQL. You will only respond with SQL code and not with any explanations.\n\n##Respond with only SQL code. Do not answer with any explanations -- just the code.\n\n##You may use the following DDL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {ddl_input}.\n\n##You may use the following documentation as a reference for what tables might be available. Use responses to past questions also to guide you: {db_input}.\n\n##You may use the following SQL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {sql_input}.", - "temperature": 0.1, - "top_p": 0.3 - } - }, - "downstream": [ - "Answer:SocialAdsWonder" - ], - "upstream": [ - "Retrieval:TrueCornersJam", - "Retrieval:EasyDryersShop", - "Retrieval:LazyChefsWatch" - ] - } - }, - "embed_id": "", - "graph": { - "nodes": [ - { - "data": { - "label": "Begin", - "name": "begin" - }, - "dragging": false, - "height": 44, - "id": "begin", - "position": { - "x": -520.486587527275, - "y": 117.87988995940702 - }, - "positionAbsolute": { - "x": -520.486587527275, - "y": 117.87988995940702 - }, - "selected": false, - "sourcePosition": "left", - "targetPosition": "right", - "type": "beginNode", - "width": 100 - }, - { - "data": { - "form": {}, - "label": "Answer", - "name": "interface" - }, - "dragging": false, - "height": 44, - "id": "Answer:SocialAdsWonder", - "position": { - "x": -284.9289105495367, - "y": 119.9282206409824 - }, - "positionAbsolute": { - "x": -284.9289105495367, - "y": 119.9282206409824 - }, - "selected": false, - "sourcePosition": "right", - "targetPosition": "left", - "type": "logicNode", - "width": 200 - }, - { - "data": { - "form": { - "empty_response": "Nothing found in DDL!", - "kb_ids": [], - "keywords_similarity_weight": 0.3, - "similarity_threshold": 0.02, - "top_n": 8 - }, - "label": "Retrieval", - "name": "DDL" - }, - "dragging": false, - "height": 44, - "id": "Retrieval:TrueCornersJam", - "position": { - "x": 119.61927071085717, - "y": -40.184181873335746 - }, - "positionAbsolute": { - "x": 119.61927071085717, - "y": -40.184181873335746 - }, - "selected": false, - "sourcePosition": "right", - "targetPosition": "left", - "type": "retrievalNode", - "width": 200 - }, - { - "data": { - "form": { - "empty_response": "Nothing found in Q-SQL!", - "kb_ids": [], - "keywords_similarity_weight": 0.3, - "similarity_threshold": 0.2, - "top_n": 8 - }, - "label": "Retrieval", - "name": "Q->SQL" - }, - "dragging": false, - "height": 44, - "id": "Retrieval:EasyDryersShop", - "position": { - "x": 81.2024576603057, - "y": 94.16303322180948 - }, - "positionAbsolute": { - "x": 81.2024576603057, - "y": 94.16303322180948 - }, - "selected": false, - "sourcePosition": "right", - "targetPosition": "left", - "type": "retrievalNode", - "width": 200 - }, - { - "data": { - "form": { - "empty_response": "Nothing found in DB-Description!", - "kb_ids": [], - "keywords_similarity_weight": 0.3, - "similarity_threshold": 0.2, - "top_n": 8 - }, - "label": "Retrieval", - "name": "DB Description" - }, - "dragging": false, - "height": 44, - "id": "Retrieval:LazyChefsWatch", - "position": { - "x": 51.228157704293324, - "y": 252.77721891325103 - }, - "positionAbsolute": { - "x": 51.228157704293324, - "y": 252.77721891325103 - }, - "selected": false, - "sourcePosition": "right", - "targetPosition": "left", - "type": "retrievalNode", - "width": 200 - }, - { - "data": { - "form": { - "cite": true, - "frequencyPenaltyEnabled": true, - "frequency_penalty": 0.7, - "llm_id": "deepseek-chat@DeepSeek", - "maxTokensEnabled": true, - "max_tokens": 256, - "message_history_window_size": 12, - "parameter": "Precise", - "parameters": [ - { - "component_id": "Retrieval:TrueCornersJam", - "id": "78644673-9236-4605-8110-59705fc38784", - "key": "ddl_input" - }, - { - "component_id": "Retrieval:LazyChefsWatch", - "id": "afbf91ce-6f58-4573-b02d-9a4973f124f4", - "key": "db_input" - }, - { - "component_id": "Retrieval:EasyDryersShop", - "id": "ee2b84f4-1cf5-43be-80e6-60bfaea3d834", - "key": "sql_input" - } - ], - "presencePenaltyEnabled": true, - "presence_penalty": 0.4, - "prompt": "##The user provides a question and you provide SQL. You will only respond with SQL code and not with any explanations.\n\n##Respond with only SQL code. Do not answer with any explanations -- just the code.\n\n##You may use the following DDL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {ddl_input}.\n\n##You may use the following documentation as a reference for what tables might be available. Use responses to past questions also to guide you: {db_input}.\n\n##You may use the following SQL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {sql_input}.", - "temperature": 0.1, - "temperatureEnabled": true, - "topPEnabled": true, - "top_p": 0.3 - }, - "label": "Generate", - "name": "LLM" - }, - "dragging": false, - "height": 212, - "id": "Generate:RareSymbolsGrin", - "position": { - "x": 6.6098512156750076, - "y": 405.0105548561454 - }, - "positionAbsolute": { - "x": 6.6098512156750076, - "y": 405.0105548561454 - }, - "selected": false, - "sourcePosition": "right", - "targetPosition": "left", - "type": "generateNode", - "width": 200 - }, - { - "data": { - "form": { - "text": "Receives a sentence that the user wants to convert into SQL and displays the result of the large model's SQL conversion." - }, - "label": "Note", - "name": "N: Interface" - }, - "dragging": false, - "height": 132, - "id": "Note:GentleRabbitsWonder", - "position": { - "x": -287.3066094433631, - "y": -30.808189185380513 - }, - "positionAbsolute": { - "x": -287.3066094433631, - "y": -30.808189185380513 - }, - "resizing": false, - "selected": false, - "sourcePosition": "right", - "style": { - "height": 132, - "width": 324 - }, - "targetPosition": "left", - "type": "noteNode", - "width": 324, - "dragHandle": ".note-drag-handle" - }, - { - "data": { - "form": { - "text": "The large model learns which tables may be available based on the responses from three knowledge bases and converts the user's input into SQL statements." - }, - "label": "Note", - "name": "N: LLM" - }, - "dragging": false, - "height": 147, - "id": "Note:SixCitiesJoke", - "position": { - "x": 5.12121582244032, - "y": 637.6539219843564 - }, - "positionAbsolute": { - "x": 5.12121582244032, - "y": 637.6539219843564 - }, - "resizing": false, - "selected": false, - "sourcePosition": "right", - "style": { - "height": 147, - "width": 326 - }, - "targetPosition": "left", - "type": "noteNode", - "width": 326, - "dragHandle": ".note-drag-handle" - }, - { - "data": { - "form": { - "text": "Searches for description about meanings of tables and fields." - }, - "label": "Note", - "name": "N: DB description" - }, - "dragging": false, - "height": 128, - "id": "Note:FamousCarpetsTaste", - "position": { - "x": 399.9267065852242, - "y": 250.0329701879931 - }, - "positionAbsolute": { - "x": 399.9267065852242, - "y": 250.0329701879931 - }, - "selected": false, - "sourcePosition": "right", - "targetPosition": "left", - "type": "noteNode", - "width": 269, - "dragHandle": ".note-drag-handle" - }, - { - "data": { - "form": { - "text": "Searches for samples about question to SQL.\nPlease check this dataset: https://huggingface.co/datasets/InfiniFlow/text2sql" - }, - "label": "Note", - "name": "N: Q->SQL" - }, - "dragging": false, - "height": 130, - "id": "Note:PoliteBeesArrive", - "position": { - "x": 489.0393427986917, - "y": 96.58232093146341 - }, - "positionAbsolute": { - "x": 489.0393427986917, - "y": 96.58232093146341 - }, - "resizing": false, - "selected": false, - "sourcePosition": "right", - "style": { - "height": 130, - "width": 451 - }, - "targetPosition": "left", - "type": "noteNode", - "width": 451, - "dragHandle": ".note-drag-handle" - }, - { - "data": { - "form": { - "text": "DDL(Data Definition Language).\n\nSearches for relevant database creation statements.\n\nIt should bind with a KB to which DDL is dumped in.\nYou could use 'General' as parsing method and ';' as delimiter." - }, - "label": "Note", - "name": "N: DDL" - }, - "dragging": false, - "height": 258, - "id": "Note:SmartWingsDouble", - "position": { - "x": 404.1930553966363, - "y": -208.84980249039137 - }, - "positionAbsolute": { - "x": 404.1930553966363, - "y": -208.84980249039137 - }, - "resizing": false, - "selected": false, - "sourcePosition": "right", - "style": { - "height": 258, - "width": 283 - }, - "targetPosition": "left", - "type": "noteNode", - "width": 283, - "dragHandle": ".note-drag-handle" - } - ], - "edges": [ - { - "id": "reactflow__edge-begin-Answer:SocialAdsWonderc", - "markerEnd": "logo", - "source": "begin", - "sourceHandle": null, - "style": { - "stroke": "rgb(202 197 245)", - "strokeWidth": 2 - }, - "target": "Answer:SocialAdsWonder", - "targetHandle": "c", - "type": "buttonEdge" - }, - { - "id": "reactflow__edge-Answer:SocialAdsWonderb-Retrieval:TrueCornersJamc", - "markerEnd": "logo", - "source": "Answer:SocialAdsWonder", - "sourceHandle": "b", - "style": { - "stroke": "rgb(202 197 245)", - "strokeWidth": 2 - }, - "target": "Retrieval:TrueCornersJam", - "targetHandle": "c", - "type": "buttonEdge" - }, - { - "id": "reactflow__edge-Answer:SocialAdsWonderb-Retrieval:EasyDryersShopc", - "markerEnd": "logo", - "source": "Answer:SocialAdsWonder", - "sourceHandle": "b", - "style": { - "stroke": "rgb(202 197 245)", - "strokeWidth": 2 - }, - "target": "Retrieval:EasyDryersShop", - "targetHandle": "c", - "type": "buttonEdge" - }, - { - "id": "reactflow__edge-Answer:SocialAdsWonderb-Retrieval:LazyChefsWatchc", - "markerEnd": "logo", - "source": "Answer:SocialAdsWonder", - "sourceHandle": "b", - "style": { - "stroke": "rgb(202 197 245)", - "strokeWidth": 2 - }, - "target": "Retrieval:LazyChefsWatch", - "targetHandle": "c", - "type": "buttonEdge" - }, - { - "id": "reactflow__edge-Retrieval:TrueCornersJamb-Generate:RareSymbolsGrinb", - "markerEnd": "logo", - "source": "Retrieval:TrueCornersJam", - "sourceHandle": "b", - "style": { - "stroke": "rgb(202 197 245)", - "strokeWidth": 2 - }, - "target": "Generate:RareSymbolsGrin", - "targetHandle": "b", - "type": "buttonEdge" - }, - { - "id": "reactflow__edge-Retrieval:EasyDryersShopb-Generate:RareSymbolsGrinb", - "markerEnd": "logo", - "source": "Retrieval:EasyDryersShop", - "sourceHandle": "b", - "style": { - "stroke": "rgb(202 197 245)", - "strokeWidth": 2 - }, - "target": "Generate:RareSymbolsGrin", - "targetHandle": "b", - "type": "buttonEdge" - }, - { - "id": "reactflow__edge-Retrieval:LazyChefsWatchb-Generate:RareSymbolsGrinb", - "markerEnd": "logo", - "source": "Retrieval:LazyChefsWatch", - "sourceHandle": "b", - "style": { - "stroke": "rgb(202 197 245)", - "strokeWidth": 2 - }, - "target": "Generate:RareSymbolsGrin", - "targetHandle": "b", - "type": "buttonEdge" - }, - { - "id": "reactflow__edge-Generate:RareSymbolsGrinc-Answer:SocialAdsWonderc", - "markerEnd": "logo", - "source": "Generate:RareSymbolsGrin", - "sourceHandle": "c", - "style": { - "stroke": "rgb(202 197 245)", - "strokeWidth": 2 - }, - "target": "Answer:SocialAdsWonder", - "targetHandle": "c", - "type": "buttonEdge" - } - ] - }, - "history": [], - "messages": [], - "path": [], - "reference": [] - }, - "avatar": "" -} +{ + "id": 5, + "title": "Text To SQL", + "description": "An agent that converts user queries into SQL statements. You must prepare three knowledge bases: 1: DDL for your database; 2: Examples of user queries converted to SQL statements; 3: A comprehensive description of your database, including but not limited to tables and records.", + "canvas_type": "chatbot", + "dsl": { + "answer": [], + "components": { + "begin": { + "obj": { + "component_name": "Begin", + "params": {} + }, + "downstream": [ + "Answer:SocialAdsWonder" + ], + "upstream": [] + }, + "Answer:SocialAdsWonder": { + "obj": { + "component_name": "Answer", + "params": {} + }, + "downstream": [ + "Retrieval:TrueCornersJam", + "Retrieval:EasyDryersShop", + "Retrieval:LazyChefsWatch" + ], + "upstream": [ + "begin", + "Generate:RareSymbolsGrin" + ] + }, + "Retrieval:TrueCornersJam": { + "obj": { + "component_name": "Retrieval", + "params": { + "empty_response": "Nothing found in DDL!", + "kb_ids": [], + "keywords_similarity_weight": 0.3, + "similarity_threshold": 0.02, + "top_n": 8 + } + }, + "downstream": [ + "Generate:RareSymbolsGrin" + ], + "upstream": [ + "Answer:SocialAdsWonder" + ] + }, + "Retrieval:EasyDryersShop": { + "obj": { + "component_name": "Retrieval", + "params": { + "empty_response": "Nothing found in Q-SQL!", + "kb_ids": [], + "keywords_similarity_weight": 0.3, + "similarity_threshold": 0.2, + "top_n": 8 + } + }, + "downstream": [ + "Generate:RareSymbolsGrin" + ], + "upstream": [ + "Answer:SocialAdsWonder" + ] + }, + "Retrieval:LazyChefsWatch": { + "obj": { + "component_name": "Retrieval", + "params": { + "empty_response": "Nothing found in DB-Description!", + "kb_ids": [], + "keywords_similarity_weight": 0.3, + "similarity_threshold": 0.2, + "top_n": 8 + } + }, + "downstream": [ + "Generate:RareSymbolsGrin" + ], + "upstream": [ + "Answer:SocialAdsWonder" + ] + }, + "Generate:RareSymbolsGrin": { + "obj": { + "component_name": "Generate", + "params": { + "cite": true, + "frequency_penalty": 0.7, + "llm_id": "deepseek-chat@DeepSeek", + "max_tokens": 256, + "message_history_window_size": 12, + "parameters": [ + { + "component_id": "Retrieval:TrueCornersJam", + "id": "78644673-9236-4605-8110-59705fc38784", + "key": "ddl_input" + }, + { + "component_id": "Retrieval:LazyChefsWatch", + "id": "afbf91ce-6f58-4573-b02d-9a4973f124f4", + "key": "db_input" + }, + { + "component_id": "Retrieval:EasyDryersShop", + "id": "ee2b84f4-1cf5-43be-80e6-60bfaea3d834", + "key": "sql_input" + } + ], + "presence_penalty": 0.4, + "prompt": "##The user provides a question and you provide SQL. You will only respond with SQL code and not with any explanations.\n\n##Respond with only SQL code. Do not answer with any explanations -- just the code.\n\n##You may use the following DDL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {ddl_input}.\n\n##You may use the following documentation as a reference for what tables might be available. Use responses to past questions also to guide you: {db_input}.\n\n##You may use the following SQL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {sql_input}.", + "temperature": 0.1, + "top_p": 0.3 + } + }, + "downstream": [ + "Answer:SocialAdsWonder" + ], + "upstream": [ + "Retrieval:TrueCornersJam", + "Retrieval:EasyDryersShop", + "Retrieval:LazyChefsWatch" + ] + } + }, + "embed_id": "", + "graph": { + "nodes": [ + { + "data": { + "label": "Begin", + "name": "begin" + }, + "dragging": false, + "height": 44, + "id": "begin", + "position": { + "x": -520.486587527275, + "y": 117.87988995940702 + }, + "positionAbsolute": { + "x": -520.486587527275, + "y": 117.87988995940702 + }, + "selected": false, + "sourcePosition": "left", + "targetPosition": "right", + "type": "beginNode", + "width": 100 + }, + { + "data": { + "form": {}, + "label": "Answer", + "name": "interface" + }, + "dragging": false, + "height": 44, + "id": "Answer:SocialAdsWonder", + "position": { + "x": -284.9289105495367, + "y": 119.9282206409824 + }, + "positionAbsolute": { + "x": -284.9289105495367, + "y": 119.9282206409824 + }, + "selected": false, + "sourcePosition": "right", + "targetPosition": "left", + "type": "logicNode", + "width": 200 + }, + { + "data": { + "form": { + "empty_response": "Nothing found in DDL!", + "kb_ids": [], + "keywords_similarity_weight": 0.3, + "similarity_threshold": 0.02, + "top_n": 8 + }, + "label": "Retrieval", + "name": "DDL" + }, + "dragging": false, + "height": 44, + "id": "Retrieval:TrueCornersJam", + "position": { + "x": 119.61927071085717, + "y": -40.184181873335746 + }, + "positionAbsolute": { + "x": 119.61927071085717, + "y": -40.184181873335746 + }, + "selected": false, + "sourcePosition": "right", + "targetPosition": "left", + "type": "retrievalNode", + "width": 200 + }, + { + "data": { + "form": { + "empty_response": "Nothing found in Q-SQL!", + "kb_ids": [], + "keywords_similarity_weight": 0.3, + "similarity_threshold": 0.2, + "top_n": 8 + }, + "label": "Retrieval", + "name": "Q->SQL" + }, + "dragging": false, + "height": 44, + "id": "Retrieval:EasyDryersShop", + "position": { + "x": 81.2024576603057, + "y": 94.16303322180948 + }, + "positionAbsolute": { + "x": 81.2024576603057, + "y": 94.16303322180948 + }, + "selected": false, + "sourcePosition": "right", + "targetPosition": "left", + "type": "retrievalNode", + "width": 200 + }, + { + "data": { + "form": { + "empty_response": "Nothing found in DB-Description!", + "kb_ids": [], + "keywords_similarity_weight": 0.3, + "similarity_threshold": 0.2, + "top_n": 8 + }, + "label": "Retrieval", + "name": "DB Description" + }, + "dragging": false, + "height": 44, + "id": "Retrieval:LazyChefsWatch", + "position": { + "x": 51.228157704293324, + "y": 252.77721891325103 + }, + "positionAbsolute": { + "x": 51.228157704293324, + "y": 252.77721891325103 + }, + "selected": false, + "sourcePosition": "right", + "targetPosition": "left", + "type": "retrievalNode", + "width": 200 + }, + { + "data": { + "form": { + "cite": true, + "frequencyPenaltyEnabled": true, + "frequency_penalty": 0.7, + "llm_id": "deepseek-chat@DeepSeek", + "maxTokensEnabled": true, + "max_tokens": 256, + "message_history_window_size": 12, + "parameter": "Precise", + "parameters": [ + { + "component_id": "Retrieval:TrueCornersJam", + "id": "78644673-9236-4605-8110-59705fc38784", + "key": "ddl_input" + }, + { + "component_id": "Retrieval:LazyChefsWatch", + "id": "afbf91ce-6f58-4573-b02d-9a4973f124f4", + "key": "db_input" + }, + { + "component_id": "Retrieval:EasyDryersShop", + "id": "ee2b84f4-1cf5-43be-80e6-60bfaea3d834", + "key": "sql_input" + } + ], + "presencePenaltyEnabled": true, + "presence_penalty": 0.4, + "prompt": "##The user provides a question and you provide SQL. You will only respond with SQL code and not with any explanations.\n\n##Respond with only SQL code. Do not answer with any explanations -- just the code.\n\n##You may use the following DDL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {ddl_input}.\n\n##You may use the following documentation as a reference for what tables might be available. Use responses to past questions also to guide you: {db_input}.\n\n##You may use the following SQL statements as a reference for what tables might be available. Use responses to past questions also to guide you: {sql_input}.", + "temperature": 0.1, + "temperatureEnabled": true, + "topPEnabled": true, + "top_p": 0.3 + }, + "label": "Generate", + "name": "LLM" + }, + "dragging": false, + "height": 212, + "id": "Generate:RareSymbolsGrin", + "position": { + "x": 6.6098512156750076, + "y": 405.0105548561454 + }, + "positionAbsolute": { + "x": 6.6098512156750076, + "y": 405.0105548561454 + }, + "selected": false, + "sourcePosition": "right", + "targetPosition": "left", + "type": "generateNode", + "width": 200 + }, + { + "data": { + "form": { + "text": "Receives a sentence that the user wants to convert into SQL and displays the result of the large model's SQL conversion." + }, + "label": "Note", + "name": "N: Interface" + }, + "dragging": false, + "height": 132, + "id": "Note:GentleRabbitsWonder", + "position": { + "x": -287.3066094433631, + "y": -30.808189185380513 + }, + "positionAbsolute": { + "x": -287.3066094433631, + "y": -30.808189185380513 + }, + "resizing": false, + "selected": false, + "sourcePosition": "right", + "style": { + "height": 132, + "width": 324 + }, + "targetPosition": "left", + "type": "noteNode", + "width": 324, + "dragHandle": ".note-drag-handle" + }, + { + "data": { + "form": { + "text": "The large model learns which tables may be available based on the responses from three knowledge bases and converts the user's input into SQL statements." + }, + "label": "Note", + "name": "N: LLM" + }, + "dragging": false, + "height": 147, + "id": "Note:SixCitiesJoke", + "position": { + "x": 5.12121582244032, + "y": 637.6539219843564 + }, + "positionAbsolute": { + "x": 5.12121582244032, + "y": 637.6539219843564 + }, + "resizing": false, + "selected": false, + "sourcePosition": "right", + "style": { + "height": 147, + "width": 326 + }, + "targetPosition": "left", + "type": "noteNode", + "width": 326, + "dragHandle": ".note-drag-handle" + }, + { + "data": { + "form": { + "text": "Searches for description about meanings of tables and fields." + }, + "label": "Note", + "name": "N: DB description" + }, + "dragging": false, + "height": 128, + "id": "Note:FamousCarpetsTaste", + "position": { + "x": 399.9267065852242, + "y": 250.0329701879931 + }, + "positionAbsolute": { + "x": 399.9267065852242, + "y": 250.0329701879931 + }, + "selected": false, + "sourcePosition": "right", + "targetPosition": "left", + "type": "noteNode", + "width": 269, + "dragHandle": ".note-drag-handle" + }, + { + "data": { + "form": { + "text": "Searches for samples about question to SQL.\nPlease check this dataset: https://huggingface.co/datasets/InfiniFlow/text2sql" + }, + "label": "Note", + "name": "N: Q->SQL" + }, + "dragging": false, + "height": 130, + "id": "Note:PoliteBeesArrive", + "position": { + "x": 489.0393427986917, + "y": 96.58232093146341 + }, + "positionAbsolute": { + "x": 489.0393427986917, + "y": 96.58232093146341 + }, + "resizing": false, + "selected": false, + "sourcePosition": "right", + "style": { + "height": 130, + "width": 451 + }, + "targetPosition": "left", + "type": "noteNode", + "width": 451, + "dragHandle": ".note-drag-handle" + }, + { + "data": { + "form": { + "text": "DDL(Data Definition Language).\n\nSearches for relevant database creation statements.\n\nIt should bind with a KB to which DDL is dumped in.\nYou could use 'General' as parsing method and ';' as delimiter." + }, + "label": "Note", + "name": "N: DDL" + }, + "dragging": false, + "height": 258, + "id": "Note:SmartWingsDouble", + "position": { + "x": 404.1930553966363, + "y": -208.84980249039137 + }, + "positionAbsolute": { + "x": 404.1930553966363, + "y": -208.84980249039137 + }, + "resizing": false, + "selected": false, + "sourcePosition": "right", + "style": { + "height": 258, + "width": 283 + }, + "targetPosition": "left", + "type": "noteNode", + "width": 283, + "dragHandle": ".note-drag-handle" + } + ], + "edges": [ + { + "id": "reactflow__edge-begin-Answer:SocialAdsWonderc", + "markerEnd": "logo", + "source": "begin", + "sourceHandle": null, + "style": { + "stroke": "rgb(202 197 245)", + "strokeWidth": 2 + }, + "target": "Answer:SocialAdsWonder", + "targetHandle": "c", + "type": "buttonEdge" + }, + { + "id": "reactflow__edge-Answer:SocialAdsWonderb-Retrieval:TrueCornersJamc", + "markerEnd": "logo", + "source": "Answer:SocialAdsWonder", + "sourceHandle": "b", + "style": { + "stroke": "rgb(202 197 245)", + "strokeWidth": 2 + }, + "target": "Retrieval:TrueCornersJam", + "targetHandle": "c", + "type": "buttonEdge" + }, + { + "id": "reactflow__edge-Answer:SocialAdsWonderb-Retrieval:EasyDryersShopc", + "markerEnd": "logo", + "source": "Answer:SocialAdsWonder", + "sourceHandle": "b", + "style": { + "stroke": "rgb(202 197 245)", + "strokeWidth": 2 + }, + "target": "Retrieval:EasyDryersShop", + "targetHandle": "c", + "type": "buttonEdge" + }, + { + "id": "reactflow__edge-Answer:SocialAdsWonderb-Retrieval:LazyChefsWatchc", + "markerEnd": "logo", + "source": "Answer:SocialAdsWonder", + "sourceHandle": "b", + "style": { + "stroke": "rgb(202 197 245)", + "strokeWidth": 2 + }, + "target": "Retrieval:LazyChefsWatch", + "targetHandle": "c", + "type": "buttonEdge" + }, + { + "id": "reactflow__edge-Retrieval:TrueCornersJamb-Generate:RareSymbolsGrinb", + "markerEnd": "logo", + "source": "Retrieval:TrueCornersJam", + "sourceHandle": "b", + "style": { + "stroke": "rgb(202 197 245)", + "strokeWidth": 2 + }, + "target": "Generate:RareSymbolsGrin", + "targetHandle": "b", + "type": "buttonEdge" + }, + { + "id": "reactflow__edge-Retrieval:EasyDryersShopb-Generate:RareSymbolsGrinb", + "markerEnd": "logo", + "source": "Retrieval:EasyDryersShop", + "sourceHandle": "b", + "style": { + "stroke": "rgb(202 197 245)", + "strokeWidth": 2 + }, + "target": "Generate:RareSymbolsGrin", + "targetHandle": "b", + "type": "buttonEdge" + }, + { + "id": "reactflow__edge-Retrieval:LazyChefsWatchb-Generate:RareSymbolsGrinb", + "markerEnd": "logo", + "source": "Retrieval:LazyChefsWatch", + "sourceHandle": "b", + "style": { + "stroke": "rgb(202 197 245)", + "strokeWidth": 2 + }, + "target": "Generate:RareSymbolsGrin", + "targetHandle": "b", + "type": "buttonEdge" + }, + { + "id": "reactflow__edge-Generate:RareSymbolsGrinc-Answer:SocialAdsWonderc", + "markerEnd": "logo", + "source": "Generate:RareSymbolsGrin", + "sourceHandle": "c", + "style": { + "stroke": "rgb(202 197 245)", + "strokeWidth": 2 + }, + "target": "Answer:SocialAdsWonder", + "targetHandle": "c", + "type": "buttonEdge" + } + ] + }, + "history": [], + "messages": [], + "path": [], + "reference": [] + }, + "avatar": "" +} diff --git a/agent/test/dsl_examples/concentrator_message.json b/agent/test/dsl_examples/concentrator_message.json index 98d62b580..ee875ae02 100644 --- a/agent/test/dsl_examples/concentrator_message.json +++ b/agent/test/dsl_examples/concentrator_message.json @@ -1,113 +1,113 @@ -{ - "components": { - "begin": { - "obj":{ - "component_name": "Begin", - "params": { - "prologue": "Hi there!" - } - }, - "downstream": ["answer:0"], - "upstream": [] - }, - "answer:0": { - "obj": { - "component_name": "Answer", - "params": {} - }, - "downstream": ["categorize:0"], - "upstream": ["begin"] - }, - "categorize:0": { - "obj": { - "component_name": "Categorize", - "params": { - "llm_id": "deepseek-chat", - "category_description": { - "product_related": { - "description": "The question is about the product usage, appearance and how it works.", - "examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?", - "to": "concentrator:0" - }, - "others": { - "description": "The question is not about the product usage, appearance and how it works.", - "examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?", - "to": "concentrator:1" - } - } - } - }, - "downstream": ["concentrator:0","concentrator:1"], - "upstream": ["answer:0"] - }, - "concentrator:0": { - "obj": { - "component_name": "Concentrator", - "params": {} - }, - "downstream": ["message:0"], - "upstream": ["categorize:0"] - }, - "concentrator:1": { - "obj": { - "component_name": "Concentrator", - "params": {} - }, - "downstream": ["message:1_0","message:1_1","message:1_2"], - "upstream": ["categorize:0"] - }, - "message:0": { - "obj": { - "component_name": "Message", - "params": { - "messages": [ - "Message 0_0!!!!!!!" - ] - } - }, - "downstream": ["answer:0"], - "upstream": ["concentrator:0"] - }, - "message:1_0": { - "obj": { - "component_name": "Message", - "params": { - "messages": [ - "Message 1_0!!!!!!!" - ] - } - }, - "downstream": ["answer:0"], - "upstream": ["concentrator:1"] - }, - "message:1_1": { - "obj": { - "component_name": "Message", - "params": { - "messages": [ - "Message 1_1!!!!!!!" - ] - } - }, - "downstream": ["answer:0"], - "upstream": ["concentrator:1"] - }, - "message:1_2": { - "obj": { - "component_name": "Message", - "params": { - "messages": [ - "Message 1_2!!!!!!!" - ] - } - }, - "downstream": ["answer:0"], - "upstream": ["concentrator:1"] - } - }, - "history": [], - "messages": [], - "path": [], - "reference": [], - "answer": [] +{ + "components": { + "begin": { + "obj":{ + "component_name": "Begin", + "params": { + "prologue": "Hi there!" + } + }, + "downstream": ["answer:0"], + "upstream": [] + }, + "answer:0": { + "obj": { + "component_name": "Answer", + "params": {} + }, + "downstream": ["categorize:0"], + "upstream": ["begin"] + }, + "categorize:0": { + "obj": { + "component_name": "Categorize", + "params": { + "llm_id": "deepseek-chat", + "category_description": { + "product_related": { + "description": "The question is about the product usage, appearance and how it works.", + "examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?", + "to": "concentrator:0" + }, + "others": { + "description": "The question is not about the product usage, appearance and how it works.", + "examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?", + "to": "concentrator:1" + } + } + } + }, + "downstream": ["concentrator:0","concentrator:1"], + "upstream": ["answer:0"] + }, + "concentrator:0": { + "obj": { + "component_name": "Concentrator", + "params": {} + }, + "downstream": ["message:0"], + "upstream": ["categorize:0"] + }, + "concentrator:1": { + "obj": { + "component_name": "Concentrator", + "params": {} + }, + "downstream": ["message:1_0","message:1_1","message:1_2"], + "upstream": ["categorize:0"] + }, + "message:0": { + "obj": { + "component_name": "Message", + "params": { + "messages": [ + "Message 0_0!!!!!!!" + ] + } + }, + "downstream": ["answer:0"], + "upstream": ["concentrator:0"] + }, + "message:1_0": { + "obj": { + "component_name": "Message", + "params": { + "messages": [ + "Message 1_0!!!!!!!" + ] + } + }, + "downstream": ["answer:0"], + "upstream": ["concentrator:1"] + }, + "message:1_1": { + "obj": { + "component_name": "Message", + "params": { + "messages": [ + "Message 1_1!!!!!!!" + ] + } + }, + "downstream": ["answer:0"], + "upstream": ["concentrator:1"] + }, + "message:1_2": { + "obj": { + "component_name": "Message", + "params": { + "messages": [ + "Message 1_2!!!!!!!" + ] + } + }, + "downstream": ["answer:0"], + "upstream": ["concentrator:1"] + } + }, + "history": [], + "messages": [], + "path": [], + "reference": [], + "answer": [] } \ No newline at end of file diff --git a/rag/svr/cache_file_svr.py b/rag/svr/cache_file_svr.py index 4bbadf0f8..5c984db97 100644 --- a/rag/svr/cache_file_svr.py +++ b/rag/svr/cache_file_svr.py @@ -1,60 +1,60 @@ -# -# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -import logging -import time -import traceback - -from api.db.db_models import close_connection -from api.db.services.task_service import TaskService -from rag.utils.storage_factory import STORAGE_IMPL -from rag.utils.redis_conn import REDIS_CONN - - -def collect(): - doc_locations = TaskService.get_ongoing_doc_name() - logging.debug(doc_locations) - if len(doc_locations) == 0: - time.sleep(1) - return - return doc_locations - - -def main(): - locations = collect() - if not locations: - return - logging.info(f"TASKS: {len(locations)}") - for kb_id, loc in locations: - try: - if REDIS_CONN.is_alive(): - try: - key = "{}/{}".format(kb_id, loc) - if REDIS_CONN.exist(key): - continue - file_bin = STORAGE_IMPL.get(kb_id, loc) - REDIS_CONN.transaction(key, file_bin, 12 * 60) - logging.info("CACHE: {}".format(loc)) - except Exception as e: - traceback.print_stack(e) - except Exception as e: - traceback.print_stack(e) - - -if __name__ == "__main__": - while True: - main() - close_connection() +# +# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +import logging +import time +import traceback + +from api.db.db_models import close_connection +from api.db.services.task_service import TaskService +from rag.utils.storage_factory import STORAGE_IMPL +from rag.utils.redis_conn import REDIS_CONN + + +def collect(): + doc_locations = TaskService.get_ongoing_doc_name() + logging.debug(doc_locations) + if len(doc_locations) == 0: + time.sleep(1) + return + return doc_locations + + +def main(): + locations = collect() + if not locations: + return + logging.info(f"TASKS: {len(locations)}") + for kb_id, loc in locations: + try: + if REDIS_CONN.is_alive(): + try: + key = "{}/{}".format(kb_id, loc) + if REDIS_CONN.exist(key): + continue + file_bin = STORAGE_IMPL.get(kb_id, loc) + REDIS_CONN.transaction(key, file_bin, 12 * 60) + logging.info("CACHE: {}".format(loc)) + except Exception as e: + traceback.print_stack(e) + except Exception as e: + traceback.print_stack(e) + + +if __name__ == "__main__": + while True: + main() + close_connection() time.sleep(1) \ No newline at end of file diff --git a/sdk/python/ragflow_sdk/modules/base.py b/sdk/python/ragflow_sdk/modules/base.py index ced942d2c..49aa18db3 100644 --- a/sdk/python/ragflow_sdk/modules/base.py +++ b/sdk/python/ragflow_sdk/modules/base.py @@ -1,38 +1,38 @@ -class Base(object): - def __init__(self, rag, res_dict): - self.rag = rag - for k, v in res_dict.items(): - if isinstance(v, dict): - self.__dict__[k] = Base(rag, v) - else: - self.__dict__[k] = v - - def to_json(self): - pr = {} - for name in dir(self): - value = getattr(self, name) - if not name.startswith('__') and not callable(value) and name != "rag": - if isinstance(value, Base): - pr[name] = value.to_json() - else: - pr[name] = value - return pr - - def post(self, path, json=None, stream=False, files=None): - res = self.rag.post(path, json, stream=stream,files=files) - return res - - def get(self, path, params=None): - res = self.rag.get(path, params) - return res - - def rm(self, path, json): - res = self.rag.delete(path, json) - return res - - def put(self,path, json): - res = self.rag.put(path,json) - return res - - def __str__(self): - return str(self.to_json()) +class Base(object): + def __init__(self, rag, res_dict): + self.rag = rag + for k, v in res_dict.items(): + if isinstance(v, dict): + self.__dict__[k] = Base(rag, v) + else: + self.__dict__[k] = v + + def to_json(self): + pr = {} + for name in dir(self): + value = getattr(self, name) + if not name.startswith('__') and not callable(value) and name != "rag": + if isinstance(value, Base): + pr[name] = value.to_json() + else: + pr[name] = value + return pr + + def post(self, path, json=None, stream=False, files=None): + res = self.rag.post(path, json, stream=stream,files=files) + return res + + def get(self, path, params=None): + res = self.rag.get(path, params) + return res + + def rm(self, path, json): + res = self.rag.delete(path, json) + return res + + def put(self,path, json): + res = self.rag.put(path,json) + return res + + def __str__(self): + return str(self.to_json()) diff --git a/sdk/python/ragflow_sdk/modules/session.py b/sdk/python/ragflow_sdk/modules/session.py index 3ea275eb5..dcfc3392b 100644 --- a/sdk/python/ragflow_sdk/modules/session.py +++ b/sdk/python/ragflow_sdk/modules/session.py @@ -1,73 +1,73 @@ -import json - -from .base import Base - - -class Session(Base): - def __init__(self, rag, res_dict): - self.id = None - self.name = "New session" - self.messages = [{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}] - for key,value in res_dict.items(): - if key =="chat_id" and value is not None: - self.chat_id = None - self.__session_type = "chat" - if key == "agent_id" and value is not None: - self.agent_id = None - self.__session_type = "agent" - super().__init__(rag, res_dict) - - def ask(self, question="",stream=True,**kwargs): - if self.__session_type == "agent": - res=self._ask_agent(question,stream) - elif self.__session_type == "chat": - res=self._ask_chat(question,stream,**kwargs) - for line in res.iter_lines(): - line = line.decode("utf-8") - if line.startswith("{"): - json_data = json.loads(line) - raise Exception(json_data["message"]) - if not line.startswith("data:"): - continue - json_data = json.loads(line[5:]) - if json_data["data"] is True or json_data["data"].get("running_status"): - continue - answer = json_data["data"]["answer"] - reference = json_data["data"].get("reference", {}) - temp_dict = { - "content": answer, - "role": "assistant" - } - if reference and "chunks" in reference: - chunks = reference["chunks"] - temp_dict["reference"] = chunks - message = Message(self.rag, temp_dict) - yield message - - def _ask_chat(self, question: str, stream: bool,**kwargs): - json_data={"question": question, "stream": True,"session_id":self.id} - json_data.update(kwargs) - res = self.post(f"/chats/{self.chat_id}/completions", - json_data, stream=stream) - return res - - def _ask_agent(self,question:str,stream:bool): - res = self.post(f"/agents/{self.agent_id}/completions", - {"question": question, "stream": True,"session_id":self.id}, stream=stream) - return res - - def update(self,update_message): - res = self.put(f"/chats/{self.chat_id}/sessions/{self.id}", - update_message) - res = res.json() - if res.get("code") != 0: - raise Exception(res.get("message")) - -class Message(Base): - def __init__(self, rag, res_dict): - self.content = "Hi! I am your assistant,can I help you?" - self.reference = None - self.role = "assistant" - self.prompt = None - self.id = None - super().__init__(rag, res_dict) +import json + +from .base import Base + + +class Session(Base): + def __init__(self, rag, res_dict): + self.id = None + self.name = "New session" + self.messages = [{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}] + for key,value in res_dict.items(): + if key =="chat_id" and value is not None: + self.chat_id = None + self.__session_type = "chat" + if key == "agent_id" and value is not None: + self.agent_id = None + self.__session_type = "agent" + super().__init__(rag, res_dict) + + def ask(self, question="",stream=True,**kwargs): + if self.__session_type == "agent": + res=self._ask_agent(question,stream) + elif self.__session_type == "chat": + res=self._ask_chat(question,stream,**kwargs) + for line in res.iter_lines(): + line = line.decode("utf-8") + if line.startswith("{"): + json_data = json.loads(line) + raise Exception(json_data["message"]) + if not line.startswith("data:"): + continue + json_data = json.loads(line[5:]) + if json_data["data"] is True or json_data["data"].get("running_status"): + continue + answer = json_data["data"]["answer"] + reference = json_data["data"].get("reference", {}) + temp_dict = { + "content": answer, + "role": "assistant" + } + if reference and "chunks" in reference: + chunks = reference["chunks"] + temp_dict["reference"] = chunks + message = Message(self.rag, temp_dict) + yield message + + def _ask_chat(self, question: str, stream: bool,**kwargs): + json_data={"question": question, "stream": True,"session_id":self.id} + json_data.update(kwargs) + res = self.post(f"/chats/{self.chat_id}/completions", + json_data, stream=stream) + return res + + def _ask_agent(self,question:str,stream:bool): + res = self.post(f"/agents/{self.agent_id}/completions", + {"question": question, "stream": True,"session_id":self.id}, stream=stream) + return res + + def update(self,update_message): + res = self.put(f"/chats/{self.chat_id}/sessions/{self.id}", + update_message) + res = res.json() + if res.get("code") != 0: + raise Exception(res.get("message")) + +class Message(Base): + def __init__(self, rag, res_dict): + self.content = "Hi! I am your assistant,can I help you?" + self.reference = None + self.role = "assistant" + self.prompt = None + self.id = None + super().__init__(rag, res_dict)