# # Copyright 2025 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import json import re import csv from copy import deepcopy from deepdoc.parser.utils import get_text from rag.app.qa import Excel from rag.nlp import rag_tokenizer def beAdoc(d, q, a, eng, row_num=-1): d["content_with_weight"] = q d["content_ltks"] = rag_tokenizer.tokenize(q) d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"]) d["tag_kwd"] = [t.strip().replace(".", "_") for t in a.split(",") if t.strip()] if row_num >= 0: d["top_int"] = [row_num] return d def chunk(filename, binary=None, lang="Chinese", callback=None, **kwargs): """ Excel and csv(txt) format files are supported. If the file is in excel format, there should be 2 column content and tags without header. And content column is ahead of tags column. And it's O.K if it has multiple sheets as long as the columns are rightly composed. If it's in csv format, it should be UTF-8 encoded. Use TAB as delimiter to separate content and tags. All the deformed lines will be ignored. Every pair will be treated as a chunk. """ eng = lang.lower() == "english" res = [] doc = { "docnm_kwd": filename, "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename)) } if re.search(r"\.xlsx?$", filename, re.IGNORECASE): callback(0.1, "Start to parse.") excel_parser = Excel() for ii, (q, a) in enumerate(excel_parser(filename, binary, callback)): res.append(beAdoc(deepcopy(doc), q, a, eng, ii)) return res elif re.search(r"\.(txt)$", filename, re.IGNORECASE): callback(0.1, "Start to parse.") txt = get_text(filename, binary) lines = txt.split("\n") comma, tab = 0, 0 for line in lines: if len(line.split(",")) == 2: comma += 1 if len(line.split("\t")) == 2: tab += 1 delimiter = "\t" if tab >= comma else "," fails = [] content = "" i = 0 while i < len(lines): arr = lines[i].split(delimiter) if len(arr) != 2: content += "\n" + lines[i] elif len(arr) == 2: content += "\n" + arr[0] res.append(beAdoc(deepcopy(doc), content, arr[1], eng, i)) content = "" i += 1 if len(res) % 999 == 0: callback(len(res) * 0.6 / len(lines), ("Extract TAG: {}".format(len(res)) + ( f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else ""))) callback(0.6, ("Extract TAG: {}".format(len(res)) + ( f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else ""))) return res elif re.search(r"\.(csv)$", filename, re.IGNORECASE): callback(0.1, "Start to parse.") txt = get_text(filename, binary) lines = txt.split("\n") fails = [] content = "" res = [] reader = csv.reader(lines) for i, row in enumerate(reader): row = [r.strip() for r in row if r.strip()] if len(row) != 2: content += "\n" + lines[i] elif len(row) == 2: content += "\n" + row[0] res.append(beAdoc(deepcopy(doc), content, row[1], eng, i)) content = "" if len(res) % 999 == 0: callback(len(res) * 0.6 / len(lines), ("Extract Tags: {}".format(len(res)) + ( f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else ""))) callback(0.6, ("Extract TAG : {}".format(len(res)) + ( f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else ""))) return res raise NotImplementedError( "Excel, csv(txt) format files are supported.") def label_question(question, kbs): from api.db.services.knowledgebase_service import KnowledgebaseService from graphrag.utils import get_tags_from_cache, set_tags_to_cache from api import settings tags = None tag_kb_ids = [] for kb in kbs: if kb.parser_config.get("tag_kb_ids"): tag_kb_ids.extend(kb.parser_config["tag_kb_ids"]) if tag_kb_ids: all_tags = get_tags_from_cache(tag_kb_ids) if not all_tags: all_tags = settings.retrievaler.all_tags_in_portion(kb.tenant_id, tag_kb_ids) set_tags_to_cache(all_tags, tag_kb_ids) else: all_tags = json.loads(all_tags) tag_kbs = KnowledgebaseService.get_by_ids(tag_kb_ids) tags = settings.retrievaler.tag_query(question, list(set([kb.tenant_id for kb in tag_kbs])), tag_kb_ids, all_tags, kb.parser_config.get("topn_tags", 3) ) return tags if __name__ == "__main__": import sys def dummy(prog=None, msg=""): pass chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)