# # Copyright 2025 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import sys sys.path.insert( 0, os.path.abspath( os.path.join( os.path.dirname( os.path.abspath(__file__)), '../../'))) from deepdoc.vision.seeit import draw_box from deepdoc.vision import OCR, init_in_out import argparse import numpy as np import trio # os.environ['CUDA_VISIBLE_DEVICES'] = '0,2' #2 gpus, uncontinuous os.environ['CUDA_VISIBLE_DEVICES'] = '0' #1 gpu # os.environ['CUDA_VISIBLE_DEVICES'] = '' #cpu def main(args): import torch.cuda cuda_devices = torch.cuda.device_count() limiter = [trio.CapacityLimiter(1) for _ in range(cuda_devices)] if cuda_devices > 1 else None ocr = OCR() images, outputs = init_in_out(args) def __ocr(i, id, img): print("Task {} start".format(i)) bxs = ocr(np.array(img), id) bxs = [(line[0], line[1][0]) for line in bxs] bxs = [{ "text": t, "bbox": [b[0][0], b[0][1], b[1][0], b[-1][1]], "type": "ocr", "score": 1} for b, t in bxs if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]] img = draw_box(images[i], bxs, ["ocr"], 1.) img.save(outputs[i], quality=95) with open(outputs[i] + ".txt", "w+", encoding='utf-8') as f: f.write("\n".join([o["text"] for o in bxs])) print("Task {} done".format(i)) async def __ocr_thread(i, id, img, limiter = None): if limiter: async with limiter: print("Task {} use device {}".format(i, id)) await trio.to_thread.run_sync(lambda: __ocr(i, id, img)) else: __ocr(i, id, img) async def __ocr_launcher(): if cuda_devices > 1: async with trio.open_nursery() as nursery: for i, img in enumerate(images): nursery.start_soon(__ocr_thread, i, i % cuda_devices, img, limiter[i % cuda_devices]) await trio.sleep(0.1) else: for i, img in enumerate(images): await __ocr_thread(i, 0, img) trio.run(__ocr_launcher) print("OCR tasks are all done") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--inputs', help="Directory where to store images or PDFs, or a file path to a single image or PDF", required=True) parser.add_argument('--output_dir', help="Directory where to store the output images. Default: './ocr_outputs'", default="./ocr_outputs") args = parser.parse_args() main(args)