import json, re, sys, os, hashlib, copy, glob, util, time, random from util.es_conn import HuEs, Postgres from util import rmSpace, findMaxDt from FlagEmbedding import FlagModel from nlp import huchunk, huqie import base64, hashlib from io import BytesIO from elasticsearch_dsl import Q from parser import ( PdfParser, DocxParser, ExcelParser ) from nlp.huchunk import ( PdfChunker, DocxChunker, ExcelChunker, PptChunker, TextChunker ) ES = HuEs("infiniflow") BATCH_SIZE = 64 PG = Postgres("infiniflow", "docgpt") PDF = PdfChunker(PdfParser()) DOC = DocxChunker(DocxParser()) EXC = ExcelChunker(ExcelParser()) PPT = PptChunker() def chuck_doc(name): name = os.path.split(name)[-1].lower().split(".")[-1] if name.find("pdf") >= 0: return PDF(name) if name.find("doc") >= 0: return DOC(name) if name.find("xlsx") >= 0: return EXC(name) if name.find("ppt") >= 0: return PDF(name) if name.find("pdf") >= 0: return PPT(name) if re.match(r"(txt|csv)", name): return TextChunker(name) def collect(comm, mod, tm): sql = f""" select did, uid, doc_name, location, updated_at from docinfo where updated_at >= '{tm}' and kb_progress = 0 and type = 'doc' and MOD(uid, {comm}) = {mod} order by updated_at asc limit 1000 """ df = PG.select(sql) df = df.fillna("") mtm = str(df["updated_at"].max())[:19] print("TOTAL:", len(df), "To: ", mtm) return df, mtm def set_progress(did, prog, msg): sql = f""" update docinfo set kb_progress={prog}, kb_progress_msg='{msg}' where did={did} """ PG.update(sql) def build(row): if row["size"] > 256000000: set_progress(row["did"], -1, "File size exceeds( <= 256Mb )") return [] doc = { "doc_id": row["did"], "title_tks": huqie.qie(os.path.split(row["location"])[-1]), "updated_at": row["updated_at"] } random.seed(time.time()) set_progress(row["did"], random.randint(0, 20)/100., "Finished preparing! Start to slice file!") obj = chuck_doc(row["location"]) if not obj: set_progress(row["did"], -1, "Unsuported file type.") return [] set_progress(row["did"], random.randint(20, 60)/100.) output_buffer = BytesIO() docs = [] md5 = hashlib.md5() for txt, img in obj.text_chunks: d = copy.deepcopy(doc) md5.update((txt + str(d["doc_id"])).encode("utf-8")) d["_id"] = md5.hexdigest() d["content_ltks"] = huqie.qie(txt) d["docnm_kwd"] = rmSpace(d["docnm_tks"]) if not img: docs.append(d) continue img.save(output_buffer, format='JPEG') d["img_bin"] = base64.b64encode(output_buffer.getvalue()) docs.append(d) for arr, img in obj.table_chunks: for i, txt in enumerate(arr): d = copy.deepcopy(doc) d["content_ltks"] = huqie.qie(txt) md5.update((txt + str(d["doc_id"])).encode("utf-8")) d["_id"] = md5.hexdigest() if not img: docs.append(d) continue img.save(output_buffer, format='JPEG') d["img_bin"] = base64.b64encode(output_buffer.getvalue()) docs.append(d) set_progress(row["did"], random.randint(60, 70)/100., "Finished slicing. Start to embedding the content.") return docs def index_name(uid):return f"docgpt_{uid}" def init_kb(row): idxnm = index_name(row["uid"]) if ES.indexExist(idxnm): return return ES.createIdx(idxnm, json.load(open("res/mapping.json", "r"))) model = None def embedding(docs): global model tts = model.encode([rmSpace(d["title_tks"]) for d in docs]) cnts = model.encode([rmSpace(d["content_ltks"]) for d in docs]) vects = 0.1 * tts + 0.9 * cnts assert len(vects) == len(docs) for i,d in enumerate(docs):d["q_vec"] = vects[i].tolist() for d in docs: set_progress(d["doc_id"], random.randint(70, 95)/100., "Finished embedding! Start to build index!") def main(comm, mod): tm_fnm = f"res/{comm}-{mod}.tm" tmf = open(tm_fnm, "a+") tm = findMaxDt(tm_fnm) rows, tm = collect(comm, mod, tm) for r in rows: if r["is_deleted"]: ES.deleteByQuery(Q("term", dock_id=r["did"]), index_name(r["uid"])) continue cks = build(r) ## TODO: exception handler ## set_progress(r["did"], -1, "ERROR: ") embedding(cks) if cks: init_kb(r) ES.bulk(cks, index_name(r["uid"])) tmf.write(str(r["updated_at"]) + "\n") tmf.close() if __name__ == "__main__": from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() main(comm, rank)