# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import re from collections import defaultdict, Counter from copy import deepcopy from typing import Callable import trio import networkx as nx from graphrag.general.graph_prompt import SUMMARIZE_DESCRIPTIONS_PROMPT from graphrag.utils import get_llm_cache, set_llm_cache, handle_single_entity_extraction, \ handle_single_relationship_extraction, split_string_by_multi_markers, flat_uniq_list, chat_limiter, get_from_to, GraphChange from rag.llm.chat_model import Base as CompletionLLM from rag.prompts import message_fit_in from rag.utils import truncate GRAPH_FIELD_SEP = "" DEFAULT_ENTITY_TYPES = ["organization", "person", "geo", "event", "category"] ENTITY_EXTRACTION_MAX_GLEANINGS = 2 class Extractor: _llm: CompletionLLM def __init__( self, llm_invoker: CompletionLLM, language: str | None = "English", entity_types: list[str] | None = None, ): self._llm = llm_invoker self._language = language self._entity_types = entity_types or DEFAULT_ENTITY_TYPES def _chat(self, system, history, gen_conf): hist = deepcopy(history) conf = deepcopy(gen_conf) response = get_llm_cache(self._llm.llm_name, system, hist, conf) if response: return response _, system_msg = message_fit_in([{"role": "system", "content": system}], int(self._llm.max_length * 0.92)) response = self._llm.chat(system_msg[0]["content"], hist, conf) response = re.sub(r"^.*", "", response, flags=re.DOTALL) if response.find("**ERROR**") >= 0: logging.warning(f"Extractor._chat got error. response: {response}") return "" set_llm_cache(self._llm.llm_name, system, response, history, gen_conf) return response def _entities_and_relations(self, chunk_key: str, records: list, tuple_delimiter: str): maybe_nodes = defaultdict(list) maybe_edges = defaultdict(list) ent_types = [t.lower() for t in self._entity_types] for record in records: record_attributes = split_string_by_multi_markers( record, [tuple_delimiter] ) if_entities = handle_single_entity_extraction( record_attributes, chunk_key ) if if_entities is not None and if_entities.get("entity_type", "unknown").lower() in ent_types: maybe_nodes[if_entities["entity_name"]].append(if_entities) continue if_relation = handle_single_relationship_extraction( record_attributes, chunk_key ) if if_relation is not None: maybe_edges[(if_relation["src_id"], if_relation["tgt_id"])].append( if_relation ) return dict(maybe_nodes), dict(maybe_edges) async def __call__( self, doc_id: str, chunks: list[str], callback: Callable | None = None ): self.callback = callback start_ts = trio.current_time() out_results = [] async with trio.open_nursery() as nursery: for i, ck in enumerate(chunks): ck = truncate(ck, int(self._llm.max_length*0.8)) nursery.start_soon(self._process_single_content, (doc_id, ck), i, len(chunks), out_results) maybe_nodes = defaultdict(list) maybe_edges = defaultdict(list) sum_token_count = 0 for m_nodes, m_edges, token_count in out_results: for k, v in m_nodes.items(): maybe_nodes[k].extend(v) for k, v in m_edges.items(): maybe_edges[tuple(sorted(k))].extend(v) sum_token_count += token_count now = trio.current_time() if callback: callback(msg = f"Entities and relationships extraction done, {len(maybe_nodes)} nodes, {len(maybe_edges)} edges, {sum_token_count} tokens, {now-start_ts:.2f}s.") start_ts = now logging.info("Entities merging...") all_entities_data = [] async with trio.open_nursery() as nursery: for en_nm, ents in maybe_nodes.items(): nursery.start_soon(self._merge_nodes, en_nm, ents, all_entities_data) now = trio.current_time() if callback: callback(msg = f"Entities merging done, {now-start_ts:.2f}s.") start_ts = now logging.info("Relationships merging...") all_relationships_data = [] async with trio.open_nursery() as nursery: for (src, tgt), rels in maybe_edges.items(): nursery.start_soon(self._merge_edges, src, tgt, rels, all_relationships_data) now = trio.current_time() if callback: callback(msg = f"Relationships merging done, {now-start_ts:.2f}s.") if not len(all_entities_data) and not len(all_relationships_data): logging.warning( "Didn't extract any entities and relationships, maybe your LLM is not working" ) if not len(all_entities_data): logging.warning("Didn't extract any entities") if not len(all_relationships_data): logging.warning("Didn't extract any relationships") return all_entities_data, all_relationships_data async def _merge_nodes(self, entity_name: str, entities: list[dict], all_relationships_data): if not entities: return entity_type = sorted( Counter( [dp["entity_type"] for dp in entities] ).items(), key=lambda x: x[1], reverse=True, )[0][0] description = GRAPH_FIELD_SEP.join( sorted(set([dp["description"] for dp in entities])) ) already_source_ids = flat_uniq_list(entities, "source_id") description = await self._handle_entity_relation_summary(entity_name, description) node_data = dict( entity_type=entity_type, description=description, source_id=already_source_ids, ) node_data["entity_name"] = entity_name all_relationships_data.append(node_data) async def _merge_edges( self, src_id: str, tgt_id: str, edges_data: list[dict], all_relationships_data=None ): if not edges_data: return weight = sum([edge["weight"] for edge in edges_data]) description = GRAPH_FIELD_SEP.join(sorted(set([edge["description"] for edge in edges_data]))) description = await self._handle_entity_relation_summary(f"{src_id} -> {tgt_id}", description) keywords = flat_uniq_list(edges_data, "keywords") source_id = flat_uniq_list(edges_data, "source_id") edge_data = dict( src_id=src_id, tgt_id=tgt_id, description=description, keywords=keywords, weight=weight, source_id=source_id ) all_relationships_data.append(edge_data) async def _merge_graph_nodes(self, graph: nx.Graph, nodes: list[str], change: GraphChange): if len(nodes) <= 1: return change.added_updated_nodes.add(nodes[0]) change.removed_nodes.update(nodes[1:]) nodes_set = set(nodes) node0_attrs = graph.nodes[nodes[0]] node0_neighbors = set(graph.neighbors(nodes[0])) for node1 in nodes[1:]: # Merge two nodes, keep "entity_name", "entity_type", "page_rank" unchanged. node1_attrs = graph.nodes[node1] node0_attrs["description"] += f"{GRAPH_FIELD_SEP}{node1_attrs['description']}" node0_attrs["source_id"] = sorted(set(node0_attrs["source_id"] + node1_attrs["source_id"])) for neighbor in graph.neighbors(node1): change.removed_edges.add(get_from_to(node1, neighbor)) if neighbor not in nodes_set: edge1_attrs = graph.get_edge_data(node1, neighbor) if neighbor in node0_neighbors: # Merge two edges change.added_updated_edges.add(get_from_to(nodes[0], neighbor)) edge0_attrs = graph.get_edge_data(nodes[0], neighbor) edge0_attrs["weight"] += edge1_attrs["weight"] edge0_attrs["description"] += f"{GRAPH_FIELD_SEP}{edge1_attrs['description']}" for attr in ["keywords", "source_id"]: edge0_attrs[attr] = sorted(set(edge0_attrs[attr] + edge1_attrs[attr])) edge0_attrs["description"] = await self._handle_entity_relation_summary(f"({nodes[0]}, {neighbor})", edge0_attrs["description"]) graph.add_edge(nodes[0], neighbor, **edge0_attrs) else: graph.add_edge(nodes[0], neighbor, **edge1_attrs) graph.remove_node(node1) node0_attrs["description"] = await self._handle_entity_relation_summary(nodes[0], node0_attrs["description"]) graph.nodes[nodes[0]].update(node0_attrs) async def _handle_entity_relation_summary( self, entity_or_relation_name: str, description: str ) -> str: summary_max_tokens = 512 use_description = truncate(description, summary_max_tokens) description_list=use_description.split(GRAPH_FIELD_SEP), if len(description_list) <= 12: return use_description prompt_template = SUMMARIZE_DESCRIPTIONS_PROMPT context_base = dict( entity_name=entity_or_relation_name, description_list=description_list, language=self._language, ) use_prompt = prompt_template.format(**context_base) logging.info(f"Trigger summary: {entity_or_relation_name}") async with chat_limiter: summary = await trio.to_thread.run_sync(lambda: self._chat(use_prompt, [{"role": "user", "content": "Output: "}], {"temperature": 0.8})) return summary