# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import base64 import io import json import os from abc import ABC from io import BytesIO import requests from ollama import Client from openai import OpenAI from openai.lib.azure import AzureOpenAI from PIL import Image from zhipuai import ZhipuAI from api.utils import get_uuid from api.utils.file_utils import get_project_base_directory from rag.nlp import is_english from rag.prompts import vision_llm_describe_prompt from rag.utils import num_tokens_from_string class Base(ABC): def __init__(self, key, model_name): pass def describe(self, image): raise NotImplementedError("Please implement encode method!") def describe_with_prompt(self, image, prompt=None): raise NotImplementedError("Please implement encode method!") def chat(self, system, history, gen_conf, image=""): if system: history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] try: for his in history: if his["role"] == "user": his["content"] = self.chat_prompt(his["content"], image) response = self.client.chat.completions.create( model=self.model_name, messages=history, temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7) ) return response.choices[0].message.content.strip(), response.usage.total_tokens except Exception as e: return "**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf, image=""): if system: history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] ans = "" tk_count = 0 try: for his in history: if his["role"] == "user": his["content"] = self.chat_prompt(his["content"], image) response = self.client.chat.completions.create( model=self.model_name, messages=history, temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7), stream=True ) for resp in response: if not resp.choices[0].delta.content: continue delta = resp.choices[0].delta.content ans += delta if resp.choices[0].finish_reason == "length": ans += "...\nFor the content length reason, it stopped, continue?" if is_english( [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" tk_count = resp.usage.total_tokens if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield tk_count def image2base64(self, image): if isinstance(image, bytes): return base64.b64encode(image).decode("utf-8") if isinstance(image, BytesIO): return base64.b64encode(image.getvalue()).decode("utf-8") buffered = BytesIO() try: image.save(buffered, format="JPEG") except Exception: image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode("utf-8") def prompt(self, b64): return [ { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{b64}" }, }, { "text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.", }, ], } ] def vision_llm_prompt(self, b64, prompt=None): return [ { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{b64}" }, }, { "type": "text", "text": prompt if prompt else vision_llm_describe_prompt(), }, ], } ] def chat_prompt(self, text, b64): return [ { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{b64}", }, }, { "type": "text", "text": text }, ] class GptV4(Base): def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1"): if not base_url: base_url = "https://api.openai.com/v1" self.client = OpenAI(api_key=key, base_url=base_url) self.model_name = model_name self.lang = lang def describe(self, image): b64 = self.image2base64(image) prompt = self.prompt(b64) for i in range(len(prompt)): for c in prompt[i]["content"]: if "text" in c: c["type"] = "text" res = self.client.chat.completions.create( model=self.model_name, messages=prompt ) return res.choices[0].message.content.strip(), res.usage.total_tokens def describe_with_prompt(self, image, prompt=None): b64 = self.image2base64(image) vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64) res = self.client.chat.completions.create( model=self.model_name, messages=vision_prompt, ) return res.choices[0].message.content.strip(), res.usage.total_tokens class AzureGptV4(Base): def __init__(self, key, model_name, lang="Chinese", **kwargs): api_key = json.loads(key).get('api_key', '') api_version = json.loads(key).get('api_version', '2024-02-01') self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version) self.model_name = model_name self.lang = lang def describe(self, image): b64 = self.image2base64(image) prompt = self.prompt(b64) for i in range(len(prompt)): for c in prompt[i]["content"]: if "text" in c: c["type"] = "text" res = self.client.chat.completions.create( model=self.model_name, messages=prompt ) return res.choices[0].message.content.strip(), res.usage.total_tokens def describe_with_prompt(self, image, prompt=None): b64 = self.image2base64(image) vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64) res = self.client.chat.completions.create( model=self.model_name, messages=vision_prompt, ) return res.choices[0].message.content.strip(), res.usage.total_tokens class QWenCV(Base): def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese", **kwargs): import dashscope dashscope.api_key = key self.model_name = model_name self.lang = lang def prompt(self, binary): # stupid as hell tmp_dir = get_project_base_directory("tmp") if not os.path.exists(tmp_dir): os.mkdir(tmp_dir) path = os.path.join(tmp_dir, "%s.jpg" % get_uuid()) Image.open(io.BytesIO(binary)).save(path) return [ { "role": "user", "content": [ { "image": f"file://{path}" }, { "text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.", }, ], } ] def vision_llm_prompt(self, binary, prompt=None): # stupid as hell tmp_dir = get_project_base_directory("tmp") if not os.path.exists(tmp_dir): os.mkdir(tmp_dir) path = os.path.join(tmp_dir, "%s.jpg" % get_uuid()) Image.open(io.BytesIO(binary)).save(path) return [ { "role": "user", "content": [ { "image": f"file://{path}" }, { "text": prompt if prompt else vision_llm_describe_prompt(), }, ], } ] def chat_prompt(self, text, b64): return [ {"image": f"{b64}"}, {"text": text}, ] def describe(self, image): from http import HTTPStatus from dashscope import MultiModalConversation response = MultiModalConversation.call(model=self.model_name, messages=self.prompt(image)) if response.status_code == HTTPStatus.OK: return response.output.choices[0]['message']['content'][0]["text"], response.usage.output_tokens return response.message, 0 def describe_with_prompt(self, image, prompt=None): from http import HTTPStatus from dashscope import MultiModalConversation vision_prompt = self.vision_llm_prompt(image, prompt) if prompt else self.vision_llm_prompt(image) response = MultiModalConversation.call(model=self.model_name, messages=vision_prompt) if response.status_code == HTTPStatus.OK: return response.output.choices[0]['message']['content'][0]["text"], response.usage.output_tokens return response.message, 0 def chat(self, system, history, gen_conf, image=""): from http import HTTPStatus from dashscope import MultiModalConversation if system: history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] for his in history: if his["role"] == "user": his["content"] = self.chat_prompt(his["content"], image) response = MultiModalConversation.call(model=self.model_name, messages=history, temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7)) ans = "" tk_count = 0 if response.status_code == HTTPStatus.OK: ans += response.output.choices[0]['message']['content'] tk_count += response.usage.total_tokens if response.output.choices[0].get("finish_reason", "") == "length": ans += "...\nFor the content length reason, it stopped, continue?" if is_english( [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" return ans, tk_count return "**ERROR**: " + response.message, tk_count def chat_streamly(self, system, history, gen_conf, image=""): from http import HTTPStatus from dashscope import MultiModalConversation if system: history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] for his in history: if his["role"] == "user": his["content"] = self.chat_prompt(his["content"], image) ans = "" tk_count = 0 try: response = MultiModalConversation.call(model=self.model_name, messages=history, temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7), stream=True) for resp in response: if resp.status_code == HTTPStatus.OK: ans = resp.output.choices[0]['message']['content'] tk_count = resp.usage.total_tokens if resp.output.choices[0].get("finish_reason", "") == "length": ans += "...\nFor the content length reason, it stopped, continue?" if is_english( [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" yield ans else: yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find( "Access") < 0 else "Out of credit. Please set the API key in **settings > Model providers.**" except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield tk_count class Zhipu4V(Base): def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs): self.client = ZhipuAI(api_key=key) self.model_name = model_name self.lang = lang def describe(self, image): b64 = self.image2base64(image) prompt = self.prompt(b64) prompt[0]["content"][1]["type"] = "text" res = self.client.chat.completions.create( model=self.model_name, messages=prompt, ) return res.choices[0].message.content.strip(), res.usage.total_tokens def describe_with_prompt(self, image, prompt=None): b64 = self.image2base64(image) vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64) res = self.client.chat.completions.create( model=self.model_name, messages=vision_prompt ) return res.choices[0].message.content.strip(), res.usage.total_tokens def chat(self, system, history, gen_conf, image=""): if system: history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] try: for his in history: if his["role"] == "user": his["content"] = self.chat_prompt(his["content"], image) response = self.client.chat.completions.create( model=self.model_name, messages=history, temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7) ) return response.choices[0].message.content.strip(), response.usage.total_tokens except Exception as e: return "**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf, image=""): if system: history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] ans = "" tk_count = 0 try: for his in history: if his["role"] == "user": his["content"] = self.chat_prompt(his["content"], image) response = self.client.chat.completions.create( model=self.model_name, messages=history, temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7), stream=True ) for resp in response: if not resp.choices[0].delta.content: continue delta = resp.choices[0].delta.content ans += delta if resp.choices[0].finish_reason == "length": ans += "...\nFor the content length reason, it stopped, continue?" if is_english( [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" tk_count = resp.usage.total_tokens if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield tk_count class OllamaCV(Base): def __init__(self, key, model_name, lang="Chinese", **kwargs): self.client = Client(host=kwargs["base_url"]) self.model_name = model_name self.lang = lang def describe(self, image): prompt = self.prompt("") try: response = self.client.generate( model=self.model_name, prompt=prompt[0]["content"][1]["text"], images=[image] ) ans = response["response"].strip() return ans, 128 except Exception as e: return "**ERROR**: " + str(e), 0 def describe_with_prompt(self, image, prompt=None): vision_prompt = self.vision_llm_prompt("", prompt) if prompt else self.vision_llm_prompt("") try: response = self.client.generate( model=self.model_name, prompt=vision_prompt[0]["content"][1]["text"], images=[image], ) ans = response["response"].strip() return ans, 128 except Exception as e: return "**ERROR**: " + str(e), 0 def chat(self, system, history, gen_conf, image=""): if system: history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] try: for his in history: if his["role"] == "user": his["images"] = [image] options = {} if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"] if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"] if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"] response = self.client.chat( model=self.model_name, messages=history, options=options, keep_alive=-1 ) ans = response["message"]["content"].strip() return ans, response["eval_count"] + response.get("prompt_eval_count", 0) except Exception as e: return "**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf, image=""): if system: history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] for his in history: if his["role"] == "user": his["images"] = [image] options = {} if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"] if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"] if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"] ans = "" try: response = self.client.chat( model=self.model_name, messages=history, stream=True, options=options, keep_alive=-1 ) for resp in response: if resp["done"]: yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0) ans += resp["message"]["content"] yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield 0 class LocalAICV(GptV4): def __init__(self, key, model_name, base_url, lang="Chinese"): if not base_url: raise ValueError("Local cv model url cannot be None") if base_url.split("/")[-1] != "v1": base_url = os.path.join(base_url, "v1") self.client = OpenAI(api_key="empty", base_url=base_url) self.model_name = model_name.split("___")[0] self.lang = lang class XinferenceCV(Base): def __init__(self, key, model_name="", lang="Chinese", base_url=""): if base_url.split("/")[-1] != "v1": base_url = os.path.join(base_url, "v1") self.client = OpenAI(api_key=key, base_url=base_url) self.model_name = model_name self.lang = lang def describe(self, image): b64 = self.image2base64(image) res = self.client.chat.completions.create( model=self.model_name, messages=self.prompt(b64) ) return res.choices[0].message.content.strip(), res.usage.total_tokens def describe_with_prompt(self, image, prompt=None): b64 = self.image2base64(image) vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64) res = self.client.chat.completions.create( model=self.model_name, messages=vision_prompt, ) return res.choices[0].message.content.strip(), res.usage.total_tokens class GeminiCV(Base): def __init__(self, key, model_name="gemini-1.0-pro-vision-latest", lang="Chinese", **kwargs): from google.generativeai import GenerativeModel, client client.configure(api_key=key) _client = client.get_default_generative_client() self.model_name = model_name self.model = GenerativeModel(model_name=self.model_name) self.model._client = _client self.lang = lang def describe(self, image): from PIL.Image import open prompt = "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else \ "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out." b64 = self.image2base64(image) img = open(BytesIO(base64.b64decode(b64))) input = [prompt, img] res = self.model.generate_content( input ) return res.text, res.usage_metadata.total_token_count def describe_with_prompt(self, image, prompt=None): from PIL.Image import open b64 = self.image2base64(image) vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64) img = open(BytesIO(base64.b64decode(b64))) input = [vision_prompt, img] res = self.model.generate_content( input, ) return res.text, res.usage_metadata.total_token_count def chat(self, system, history, gen_conf, image=""): from transformers import GenerationConfig if system: history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] try: for his in history: if his["role"] == "assistant": his["role"] = "model" his["parts"] = [his["content"]] his.pop("content") if his["role"] == "user": his["parts"] = [his["content"]] his.pop("content") history[-1]["parts"].append("data:image/jpeg;base64," + image) response = self.model.generate_content(history, generation_config=GenerationConfig( temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7))) ans = response.text return ans, response.usage_metadata.total_token_count except Exception as e: return "**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf, image=""): from transformers import GenerationConfig if system: history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"] ans = "" try: for his in history: if his["role"] == "assistant": his["role"] = "model" his["parts"] = [his["content"]] his.pop("content") if his["role"] == "user": his["parts"] = [his["content"]] his.pop("content") history[-1]["parts"].append("data:image/jpeg;base64," + image) response = self.model.generate_content(history, generation_config=GenerationConfig( temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7)), stream=True) for resp in response: if not resp.text: continue ans += resp.text yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield response._chunks[-1].usage_metadata.total_token_count class OpenRouterCV(GptV4): def __init__( self, key, model_name, lang="Chinese", base_url="https://openrouter.ai/api/v1", ): if not base_url: base_url = "https://openrouter.ai/api/v1" self.client = OpenAI(api_key=key, base_url=base_url) self.model_name = model_name self.lang = lang class LocalCV(Base): def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs): pass def describe(self, image): return "", 0 class NvidiaCV(Base): def __init__( self, key, model_name, lang="Chinese", base_url="https://ai.api.nvidia.com/v1/vlm", ): if not base_url: base_url = ("https://ai.api.nvidia.com/v1/vlm",) self.lang = lang factory, llm_name = model_name.split("/") if factory != "liuhaotian": self.base_url = os.path.join(base_url, factory, llm_name) else: self.base_url = os.path.join( base_url, "community", llm_name.replace("-v1.6", "16") ) self.key = key def describe(self, image): b64 = self.image2base64(image) response = requests.post( url=self.base_url, headers={ "accept": "application/json", "content-type": "application/json", "Authorization": f"Bearer {self.key}", }, json={ "messages": self.prompt(b64) }, ) response = response.json() return ( response["choices"][0]["message"]["content"].strip(), response["usage"]["total_tokens"], ) def describe_with_prompt(self, image, prompt=None): b64 = self.image2base64(image) vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64) response = requests.post( url=self.base_url, headers={ "accept": "application/json", "content-type": "application/json", "Authorization": f"Bearer {self.key}", }, json={ "messages": vision_prompt, }, ) response = response.json() return ( response["choices"][0]["message"]["content"].strip(), response["usage"]["total_tokens"], ) def prompt(self, b64): return [ { "role": "user", "content": ( "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out." ) + f' ', } ] def vision_llm_prompt(self, b64, prompt=None): return [ { "role": "user", "content": ( prompt if prompt else vision_llm_describe_prompt() ) + f' ', } ] def chat_prompt(self, text, b64): return [ { "role": "user", "content": text + f' ', } ] class StepFunCV(GptV4): def __init__(self, key, model_name="step-1v-8k", lang="Chinese", base_url="https://api.stepfun.com/v1"): if not base_url: base_url = "https://api.stepfun.com/v1" self.client = OpenAI(api_key=key, base_url=base_url) self.model_name = model_name self.lang = lang class LmStudioCV(GptV4): def __init__(self, key, model_name, lang="Chinese", base_url=""): if not base_url: raise ValueError("Local llm url cannot be None") if base_url.split("/")[-1] != "v1": base_url = os.path.join(base_url, "v1") self.client = OpenAI(api_key="lm-studio", base_url=base_url) self.model_name = model_name self.lang = lang class OpenAI_APICV(GptV4): def __init__(self, key, model_name, lang="Chinese", base_url=""): if not base_url: raise ValueError("url cannot be None") if base_url.split("/")[-1] != "v1": base_url = os.path.join(base_url, "v1") self.client = OpenAI(api_key=key, base_url=base_url) self.model_name = model_name.split("___")[0] self.lang = lang class TogetherAICV(GptV4): def __init__(self, key, model_name, lang="Chinese", base_url="https://api.together.xyz/v1"): if not base_url: base_url = "https://api.together.xyz/v1" super().__init__(key, model_name, lang, base_url) class YiCV(GptV4): def __init__(self, key, model_name, lang="Chinese", base_url="https://api.lingyiwanwu.com/v1",): if not base_url: base_url = "https://api.lingyiwanwu.com/v1" super().__init__(key, model_name, lang, base_url) class SILICONFLOWCV(GptV4): def __init__(self, key, model_name, lang="Chinese", base_url="https://api.siliconflow.cn/v1",): if not base_url: base_url = "https://api.siliconflow.cn/v1" super().__init__(key, model_name, lang, base_url) class HunyuanCV(Base): def __init__(self, key, model_name, lang="Chinese", base_url=None): from tencentcloud.common import credential from tencentcloud.hunyuan.v20230901 import hunyuan_client key = json.loads(key) sid = key.get("hunyuan_sid", "") sk = key.get("hunyuan_sk", "") cred = credential.Credential(sid, sk) self.model_name = model_name self.client = hunyuan_client.HunyuanClient(cred, "") self.lang = lang def describe(self, image): from tencentcloud.common.exception.tencent_cloud_sdk_exception import ( TencentCloudSDKException, ) from tencentcloud.hunyuan.v20230901 import models b64 = self.image2base64(image) req = models.ChatCompletionsRequest() params = {"Model": self.model_name, "Messages": self.prompt(b64)} req.from_json_string(json.dumps(params)) ans = "" try: response = self.client.ChatCompletions(req) ans = response.Choices[0].Message.Content return ans, response.Usage.TotalTokens except TencentCloudSDKException as e: return ans + "\n**ERROR**: " + str(e), 0 def describe_with_prompt(self, image, prompt=None): from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException from tencentcloud.hunyuan.v20230901 import models b64 = self.image2base64(image) vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64) req = models.ChatCompletionsRequest() params = {"Model": self.model_name, "Messages": vision_prompt} req.from_json_string(json.dumps(params)) ans = "" try: response = self.client.ChatCompletions(req) ans = response.Choices[0].Message.Content return ans, response.Usage.TotalTokens except TencentCloudSDKException as e: return ans + "\n**ERROR**: " + str(e), 0 def prompt(self, b64): return [ { "Role": "user", "Contents": [ { "Type": "image_url", "ImageUrl": { "Url": f"data:image/jpeg;base64,{b64}" }, }, { "Type": "text", "Text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.", }, ], } ] class AnthropicCV(Base): def __init__(self, key, model_name, base_url=None): import anthropic self.client = anthropic.Anthropic(api_key=key) self.model_name = model_name self.system = "" self.max_tokens = 8192 if "haiku" in self.model_name or "opus" in self.model_name: self.max_tokens = 4096 def prompt(self, b64, prompt): return [ { "role": "user", "content": [ { "type": "image", "source": { "type": "base64", "media_type": "image/jpeg", "data": b64, }, }, { "type": "text", "text": prompt } ], } ] def describe(self, image): b64 = self.image2base64(image) prompt = self.prompt(b64, "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out." ) response = self.client.messages.create( model=self.model_name, max_tokens=self.max_tokens, messages=prompt ) return response["content"][0]["text"].strip(), response["usage"]["input_tokens"]+response["usage"]["output_tokens"] def describe_with_prompt(self, image, prompt=None): b64 = self.image2base64(image) prompt = self.prompt(b64, prompt if prompt else vision_llm_describe_prompt()) response = self.client.messages.create( model=self.model_name, max_tokens=self.max_tokens, messages=prompt ) return response["content"][0]["text"].strip(), response["usage"]["input_tokens"]+response["usage"]["output_tokens"] def chat(self, system, history, gen_conf): if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] gen_conf["max_tokens"] = self.max_tokens ans = "" try: response = self.client.messages.create( model=self.model_name, messages=history, system=system, stream=False, **gen_conf, ).to_dict() ans = response["content"][0]["text"] if response["stop_reason"] == "max_tokens": ans += ( "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" ) return ( ans, response["usage"]["input_tokens"] + response["usage"]["output_tokens"], ) except Exception as e: return ans + "\n**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf): if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] gen_conf["max_tokens"] = self.max_tokens ans = "" total_tokens = 0 try: response = self.client.messages.create( model=self.model_name, messages=history, system=system, stream=True, **gen_conf, ) for res in response: if res.type == 'content_block_delta': if res.delta.type == "thinking_delta" and res.delta.thinking: if ans.find("") < 0: ans += "" ans = ans.replace("", "") ans += res.delta.thinking + "" else: text = res.delta.text ans += text total_tokens += num_tokens_from_string(text) yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens class GPUStackCV(GptV4): def __init__(self, key, model_name, lang="Chinese", base_url=""): if not base_url: raise ValueError("Local llm url cannot be None") if base_url.split("/")[-1] != "v1": base_url = os.path.join(base_url, "v1") self.client = OpenAI(api_key=key, base_url=base_url) self.model_name = model_name self.lang = lang