# # Copyright 2025 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import uuid from enum import auto from typing import Annotated, Any from flask import Request from pydantic import UUID1, BaseModel, Field, StringConstraints, ValidationError, field_serializer, field_validator from strenum import StrEnum from werkzeug.exceptions import BadRequest, UnsupportedMediaType from api.constants import DATASET_NAME_LIMIT def validate_and_parse_json_request(request: Request, validator: type[BaseModel], *, extras: dict[str, Any] | None = None, exclude_unset: bool = False) -> tuple[dict[str, Any] | None, str | None]: """ Validates and parses JSON requests through a multi-stage validation pipeline. Implements a four-stage validation process: 1. Content-Type verification (must be application/json) 2. JSON syntax validation 3. Payload structure type checking 4. Pydantic model validation with error formatting Args: request (Request): Flask request object containing HTTP payload validator (type[BaseModel]): Pydantic model class for data validation extras (dict[str, Any] | None): Additional fields to merge into payload before validation. These fields will be removed from the final output exclude_unset (bool): Whether to exclude fields that have not been explicitly set Returns: tuple[Dict[str, Any] | None, str | None]: - First element: - Validated dictionary on success - None on validation failure - Second element: - None on success - Diagnostic error message on failure Raises: UnsupportedMediaType: When Content-Type header is not application/json BadRequest: For structural JSON syntax errors ValidationError: When payload violates Pydantic schema rules Examples: >>> validate_and_parse_json_request(valid_request, DatasetSchema) ({"name": "Dataset1", "format": "csv"}, None) >>> validate_and_parse_json_request(xml_request, DatasetSchema) (None, "Unsupported content type: Expected application/json, got text/xml") >>> validate_and_parse_json_request(bad_json_request, DatasetSchema) (None, "Malformed JSON syntax: Missing commas/brackets or invalid encoding") Notes: 1. Validation Priority: - Content-Type verification precedes JSON parsing - Structural validation occurs before schema validation 2. Extra fields added via `extras` parameter are automatically removed from the final output after validation """ try: payload = request.get_json() or {} except UnsupportedMediaType: return None, f"Unsupported content type: Expected application/json, got {request.content_type}" except BadRequest: return None, "Malformed JSON syntax: Missing commas/brackets or invalid encoding" if not isinstance(payload, dict): return None, f"Invalid request payload: expected object, got {type(payload).__name__}" try: if extras is not None: payload.update(extras) validated_request = validator(**payload) except ValidationError as e: return None, format_validation_error_message(e) parsed_payload = validated_request.model_dump(by_alias=True, exclude_unset=exclude_unset) if extras is not None: for key in list(parsed_payload.keys()): if key in extras: del parsed_payload[key] return parsed_payload, None def format_validation_error_message(e: ValidationError) -> str: """ Formats validation errors into a standardized string format. Processes pydantic ValidationError objects to create human-readable error messages containing field locations, error descriptions, and input values. Args: e (ValidationError): The validation error instance containing error details Returns: str: Formatted error messages joined by newlines. Each line contains: - Field path (dot-separated) - Error message - Truncated input value (max 128 chars) Example: >>> try: ... UserModel(name=123, email="invalid") ... except ValidationError as e: ... print(format_validation_error_message(e)) Field: - Message: - Value: <123> Field: - Message: - Value: """ error_messages = [] for error in e.errors(): field = ".".join(map(str, error["loc"])) msg = error["msg"] input_val = error["input"] input_str = str(input_val) if len(input_str) > 128: input_str = input_str[:125] + "..." error_msg = f"Field: <{field}> - Message: <{msg}> - Value: <{input_str}>" error_messages.append(error_msg) return "\n".join(error_messages) class PermissionEnum(StrEnum): me = auto() team = auto() class ChunkMethodnEnum(StrEnum): naive = auto() book = auto() email = auto() laws = auto() manual = auto() one = auto() paper = auto() picture = auto() presentation = auto() qa = auto() table = auto() tag = auto() class GraphragMethodEnum(StrEnum): light = auto() general = auto() class Base(BaseModel): class Config: extra = "forbid" class RaptorConfig(Base): use_raptor: bool = Field(default=False) prompt: Annotated[ str, StringConstraints(strip_whitespace=True, min_length=1), Field( default="Please summarize the following paragraphs. Be careful with the numbers, do not make things up. Paragraphs as following:\n {cluster_content}\nThe above is the content you need to summarize." ), ] max_token: int = Field(default=256, ge=1, le=2048) threshold: float = Field(default=0.1, ge=0.0, le=1.0) max_cluster: int = Field(default=64, ge=1, le=1024) random_seed: int = Field(default=0, ge=0) class GraphragConfig(Base): use_graphrag: bool = Field(default=False) entity_types: list[str] = Field(default_factory=lambda: ["organization", "person", "geo", "event", "category"]) method: GraphragMethodEnum = Field(default=GraphragMethodEnum.light) community: bool = Field(default=False) resolution: bool = Field(default=False) class ParserConfig(Base): auto_keywords: int = Field(default=0, ge=0, le=32) auto_questions: int = Field(default=0, ge=0, le=10) chunk_token_num: int = Field(default=128, ge=1, le=2048) delimiter: str = Field(default=r"\n", min_length=1) graphrag: GraphragConfig | None = None html4excel: bool = False layout_recognize: str = "DeepDOC" raptor: RaptorConfig | None = None tag_kb_ids: list[str] = Field(default_factory=list) topn_tags: int = Field(default=1, ge=1, le=10) filename_embd_weight: float | None = Field(default=None, ge=0.0, le=1.0) task_page_size: int | None = Field(default=None, ge=1) pages: list[list[int]] | None = None class CreateDatasetReq(Base): name: Annotated[str, StringConstraints(strip_whitespace=True, min_length=1, max_length=DATASET_NAME_LIMIT), Field(...)] avatar: str | None = Field(default=None, max_length=65535) description: str | None = Field(default=None, max_length=65535) embedding_model: Annotated[str, StringConstraints(strip_whitespace=True, max_length=255), Field(default="", serialization_alias="embd_id")] permission: Annotated[PermissionEnum, StringConstraints(strip_whitespace=True, min_length=1, max_length=16), Field(default=PermissionEnum.me)] chunk_method: Annotated[ChunkMethodnEnum, StringConstraints(strip_whitespace=True, min_length=1, max_length=32), Field(default=ChunkMethodnEnum.naive, serialization_alias="parser_id")] pagerank: int = Field(default=0, ge=0, le=100) parser_config: ParserConfig | None = Field(default=None) @field_validator("avatar") @classmethod def validate_avatar_base64(cls, v: str | None) -> str | None: """ Validates Base64-encoded avatar string format and MIME type compliance. Implements a three-stage validation workflow: 1. MIME prefix existence check 2. MIME type format validation 3. Supported type verification Args: v (str): Raw avatar field value Returns: str: Validated Base64 string Raises: ValueError: For structural errors in these cases: - Missing MIME prefix header - Invalid MIME prefix format - Unsupported image MIME type Example: ```python # Valid case CreateDatasetReq(avatar="...") # Invalid cases CreateDatasetReq(avatar="image/jpeg;base64,...") # Missing 'data:' prefix CreateDatasetReq(avatar="data:video/mp4;base64,...") # Unsupported MIME type ``` """ if v is None: return v if "," in v: prefix, _ = v.split(",", 1) if not prefix.startswith("data:"): raise ValueError("Invalid MIME prefix format. Must start with 'data:'") mime_type = prefix[5:].split(";")[0] supported_mime_types = ["image/jpeg", "image/png"] if mime_type not in supported_mime_types: raise ValueError(f"Unsupported MIME type. Allowed: {supported_mime_types}") return v else: raise ValueError("Missing MIME prefix. Expected format: data:;base64,") @field_validator("embedding_model", mode="after") @classmethod def validate_embedding_model(cls, v: str) -> str: """ Validates embedding model identifier format compliance. Validation pipeline: 1. Structural format verification 2. Component non-empty check 3. Value normalization Args: v (str): Raw model identifier Returns: str: Validated @ format Raises: ValueError: For these violations: - Missing @ separator - Empty model_name/provider - Invalid component structure Examples: Valid: "text-embedding-3-large@openai" Invalid: "invalid_model" (no @) Invalid: "@openai" (empty model_name) Invalid: "text-embedding-3-large@" (empty provider) """ if "@" not in v: raise ValueError("Embedding model identifier must follow @ format") components = v.split("@", 1) if len(components) != 2 or not all(components): raise ValueError("Both model_name and provider must be non-empty strings") model_name, provider = components if not model_name.strip() or not provider.strip(): raise ValueError("Model name and provider cannot be whitespace-only strings") return v @field_validator("permission", mode="before") @classmethod def permission_auto_lowercase(cls, v: Any) -> Any: """ Normalize permission input to lowercase for consistent PermissionEnum matching. Args: v (Any): Raw input value for the permission field Returns: Lowercase string if input is string type, otherwise returns original value Behavior: - Converts string inputs to lowercase (e.g., "ME" → "me") - Non-string values pass through unchanged - Works in validation pre-processing stage (before enum conversion) """ return v.lower() if isinstance(v, str) else v @field_validator("parser_config", mode="before") @classmethod def normalize_empty_parser_config(cls, v: Any) -> Any: """ Normalizes empty parser configuration by converting empty dictionaries to None. This validator ensures consistent handling of empty parser configurations across the application by converting empty dicts to None values. Args: v (Any): Raw input value for the parser config field Returns: Any: Returns None if input is an empty dict, otherwise returns the original value Example: >>> normalize_empty_parser_config({}) None >>> normalize_empty_parser_config({"key": "value"}) {"key": "value"} """ if v == {}: return None return v @field_validator("parser_config", mode="after") @classmethod def validate_parser_config_json_length(cls, v: ParserConfig | None) -> ParserConfig | None: """ Validates serialized JSON length constraints for parser configuration. Implements a two-stage validation workflow: 1. Null check - bypass validation for empty configurations 2. Model serialization - convert Pydantic model to JSON string 3. Size verification - enforce maximum allowed payload size Args: v (ParserConfig | None): Raw parser configuration object Returns: ParserConfig | None: Validated configuration object Raises: ValueError: When serialized JSON exceeds 65,535 characters """ if v is None: return None if (json_str := v.model_dump_json()) and len(json_str) > 65535: raise ValueError(f"Parser config exceeds size limit (max 65,535 characters). Current size: {len(json_str):,}") return v class UpdateDatasetReq(CreateDatasetReq): dataset_id: UUID1 = Field(...) name: Annotated[str, StringConstraints(strip_whitespace=True, min_length=1, max_length=DATASET_NAME_LIMIT), Field(default="")] @field_serializer("dataset_id") def serialize_uuid_to_hex(self, v: uuid.UUID) -> str: return v.hex