mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-20 21:20:00 +08:00

### What problem does this PR solve? #4543 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
295 lines
10 KiB
Python
295 lines
10 KiB
Python
#
|
||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
#
|
||
|
||
import logging
|
||
import copy
|
||
import re
|
||
|
||
from api.db import ParserType
|
||
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks
|
||
from deepdoc.parser import PdfParser, PlainParser
|
||
import numpy as np
|
||
|
||
|
||
class Pdf(PdfParser):
|
||
def __init__(self):
|
||
self.model_speciess = ParserType.PAPER.value
|
||
super().__init__()
|
||
|
||
def __call__(self, filename, binary=None, from_page=0,
|
||
to_page=100000, zoomin=3, callback=None):
|
||
from timeit import default_timer as timer
|
||
start = timer()
|
||
callback(msg="OCR started")
|
||
self.__images__(
|
||
filename if not binary else binary,
|
||
zoomin,
|
||
from_page,
|
||
to_page,
|
||
callback
|
||
)
|
||
callback(msg="OCR finished ({:.2f}s)".format(timer() - start))
|
||
|
||
start = timer()
|
||
self._layouts_rec(zoomin)
|
||
callback(0.63, "Layout analysis ({:.2f}s)".format(timer() - start))
|
||
logging.debug(f"layouts cost: {timer() - start}s")
|
||
|
||
start = timer()
|
||
self._table_transformer_job(zoomin)
|
||
callback(0.68, "Table analysis ({:.2f}s)".format(timer() - start))
|
||
|
||
start = timer()
|
||
self._text_merge()
|
||
tbls = self._extract_table_figure(True, zoomin, True, True)
|
||
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
|
||
self._concat_downward()
|
||
self._filter_forpages()
|
||
callback(0.75, "Text merged ({:.2f}s)".format(timer() - start))
|
||
|
||
# clean mess
|
||
if column_width < self.page_images[0].size[0] / zoomin / 2:
|
||
logging.debug("two_column................... {} {}".format(column_width,
|
||
self.page_images[0].size[0] / zoomin / 2))
|
||
self.boxes = self.sort_X_by_page(self.boxes, column_width / 2)
|
||
for b in self.boxes:
|
||
b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip())
|
||
|
||
def _begin(txt):
|
||
return re.match(
|
||
"[0-9. 一、i]*(introduction|abstract|摘要|引言|keywords|key words|关键词|background|背景|目录|前言|contents)",
|
||
txt.lower().strip())
|
||
|
||
if from_page > 0:
|
||
return {
|
||
"title": "",
|
||
"authors": "",
|
||
"abstract": "",
|
||
"sections": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes if
|
||
re.match(r"(text|title)", b.get("layoutno", "text"))],
|
||
"tables": tbls
|
||
}
|
||
# get title and authors
|
||
title = ""
|
||
authors = []
|
||
i = 0
|
||
while i < min(32, len(self.boxes)-1):
|
||
b = self.boxes[i]
|
||
i += 1
|
||
if b.get("layoutno", "").find("title") >= 0:
|
||
title = b["text"]
|
||
if _begin(title):
|
||
title = ""
|
||
break
|
||
for j in range(3):
|
||
if _begin(self.boxes[i + j]["text"]):
|
||
break
|
||
authors.append(self.boxes[i + j]["text"])
|
||
break
|
||
break
|
||
# get abstract
|
||
abstr = ""
|
||
i = 0
|
||
while i + 1 < min(32, len(self.boxes)):
|
||
b = self.boxes[i]
|
||
i += 1
|
||
txt = b["text"].lower().strip()
|
||
if re.match("(abstract|摘要)", txt):
|
||
if len(txt.split()) > 32 or len(txt) > 64:
|
||
abstr = txt + self._line_tag(b, zoomin)
|
||
break
|
||
txt = self.boxes[i]["text"].lower().strip()
|
||
if len(txt.split()) > 32 or len(txt) > 64:
|
||
abstr = txt + self._line_tag(self.boxes[i], zoomin)
|
||
i += 1
|
||
break
|
||
if not abstr:
|
||
i = 0
|
||
|
||
callback(
|
||
0.8, "Page {}~{}: Text merging finished".format(
|
||
from_page, min(
|
||
to_page, self.total_page)))
|
||
for b in self.boxes:
|
||
logging.debug("{} {}".format(b["text"], b.get("layoutno")))
|
||
logging.debug("{}".format(tbls))
|
||
|
||
return {
|
||
"title": title,
|
||
"authors": " ".join(authors),
|
||
"abstract": abstr,
|
||
"sections": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes[i:] if
|
||
re.match(r"(text|title)", b.get("layoutno", "text"))],
|
||
"tables": tbls
|
||
}
|
||
|
||
|
||
def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||
lang="Chinese", callback=None, **kwargs):
|
||
"""
|
||
Only pdf is supported.
|
||
The abstract of the paper will be sliced as an entire chunk, and will not be sliced partly.
|
||
"""
|
||
if re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||
if kwargs.get("parser_config", {}).get("layout_recognize", "DeepDOC") == "Plain Text":
|
||
pdf_parser = PlainParser()
|
||
paper = {
|
||
"title": filename,
|
||
"authors": " ",
|
||
"abstract": "",
|
||
"sections": pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page)[0],
|
||
"tables": []
|
||
}
|
||
else:
|
||
pdf_parser = Pdf()
|
||
paper = pdf_parser(filename if not binary else binary,
|
||
from_page=from_page, to_page=to_page, callback=callback)
|
||
else:
|
||
raise NotImplementedError("file type not supported yet(pdf supported)")
|
||
|
||
doc = {"docnm_kwd": filename, "authors_tks": rag_tokenizer.tokenize(paper["authors"]),
|
||
"title_tks": rag_tokenizer.tokenize(paper["title"] if paper["title"] else filename)}
|
||
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
|
||
doc["authors_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["authors_tks"])
|
||
# is it English
|
||
eng = lang.lower() == "english" # pdf_parser.is_english
|
||
logging.debug("It's English.....{}".format(eng))
|
||
|
||
res = tokenize_table(paper["tables"], doc, eng)
|
||
|
||
if paper["abstract"]:
|
||
d = copy.deepcopy(doc)
|
||
txt = pdf_parser.remove_tag(paper["abstract"])
|
||
d["important_kwd"] = ["abstract", "总结", "概括", "summary", "summarize"]
|
||
d["important_tks"] = " ".join(d["important_kwd"])
|
||
d["image"], poss = pdf_parser.crop(
|
||
paper["abstract"], need_position=True)
|
||
add_positions(d, poss)
|
||
tokenize(d, txt, eng)
|
||
res.append(d)
|
||
|
||
sorted_sections = paper["sections"]
|
||
# set pivot using the most frequent type of title,
|
||
# then merge between 2 pivot
|
||
bull = bullets_category([txt for txt, _ in sorted_sections])
|
||
most_level, levels = title_frequency(bull, sorted_sections)
|
||
assert len(sorted_sections) == len(levels)
|
||
sec_ids = []
|
||
sid = 0
|
||
for i, lvl in enumerate(levels):
|
||
if lvl <= most_level and i > 0 and lvl != levels[i - 1]:
|
||
sid += 1
|
||
sec_ids.append(sid)
|
||
logging.debug("{} {} {} {}".format(lvl, sorted_sections[i][0], most_level, sid))
|
||
|
||
chunks = []
|
||
last_sid = -2
|
||
for (txt, _), sec_id in zip(sorted_sections, sec_ids):
|
||
if sec_id == last_sid:
|
||
if chunks:
|
||
chunks[-1] += "\n" + txt
|
||
continue
|
||
chunks.append(txt)
|
||
last_sid = sec_id
|
||
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
|
||
return res
|
||
|
||
|
||
"""
|
||
readed = [0] * len(paper["lines"])
|
||
# find colon firstly
|
||
i = 0
|
||
while i + 1 < len(paper["lines"]):
|
||
txt = pdf_parser.remove_tag(paper["lines"][i][0])
|
||
j = i
|
||
if txt.strip("\n").strip()[-1] not in "::":
|
||
i += 1
|
||
continue
|
||
i += 1
|
||
while i < len(paper["lines"]) and not paper["lines"][i][0]:
|
||
i += 1
|
||
if i >= len(paper["lines"]): break
|
||
proj = [paper["lines"][i][0].strip()]
|
||
i += 1
|
||
while i < len(paper["lines"]) and paper["lines"][i][0].strip()[0] == proj[-1][0]:
|
||
proj.append(paper["lines"][i])
|
||
i += 1
|
||
for k in range(j, i): readed[k] = True
|
||
txt = txt[::-1]
|
||
if eng:
|
||
r = re.search(r"(.*?) ([\\.;?!]|$)", txt)
|
||
txt = r.group(1)[::-1] if r else txt[::-1]
|
||
else:
|
||
r = re.search(r"(.*?) ([。?;!]|$)", txt)
|
||
txt = r.group(1)[::-1] if r else txt[::-1]
|
||
for p in proj:
|
||
d = copy.deepcopy(doc)
|
||
txt += "\n" + pdf_parser.remove_tag(p)
|
||
d["image"], poss = pdf_parser.crop(p, need_position=True)
|
||
add_positions(d, poss)
|
||
tokenize(d, txt, eng)
|
||
res.append(d)
|
||
|
||
i = 0
|
||
chunk = []
|
||
tk_cnt = 0
|
||
def add_chunk():
|
||
nonlocal chunk, res, doc, pdf_parser, tk_cnt
|
||
d = copy.deepcopy(doc)
|
||
ck = "\n".join(chunk)
|
||
tokenize(d, pdf_parser.remove_tag(ck), pdf_parser.is_english)
|
||
d["image"], poss = pdf_parser.crop(ck, need_position=True)
|
||
add_positions(d, poss)
|
||
res.append(d)
|
||
chunk = []
|
||
tk_cnt = 0
|
||
|
||
while i < len(paper["lines"]):
|
||
if tk_cnt > 128:
|
||
add_chunk()
|
||
if readed[i]:
|
||
i += 1
|
||
continue
|
||
readed[i] = True
|
||
txt, layouts = paper["lines"][i]
|
||
txt_ = pdf_parser.remove_tag(txt)
|
||
i += 1
|
||
cnt = num_tokens_from_string(txt_)
|
||
if any([
|
||
layouts.find("title") >= 0 and chunk,
|
||
cnt + tk_cnt > 128 and tk_cnt > 32,
|
||
]):
|
||
add_chunk()
|
||
chunk = [txt]
|
||
tk_cnt = cnt
|
||
else:
|
||
chunk.append(txt)
|
||
tk_cnt += cnt
|
||
|
||
if chunk: add_chunk()
|
||
for i, d in enumerate(res):
|
||
print(d)
|
||
# d["image"].save(f"./logs/{i}.jpg")
|
||
return res
|
||
"""
|
||
|
||
if __name__ == "__main__":
|
||
import sys
|
||
|
||
def dummy(prog=None, msg=""):
|
||
pass
|
||
chunk(sys.argv[1], callback=dummy)
|