ragflow/rag/app/paper.py
Kevin Hu dd0ebbea35
Light GraphRAG (#4585)
### What problem does this PR solve?

#4543

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-01-22 19:43:14 +08:00

295 lines
10 KiB
Python
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import copy
import re
from api.db import ParserType
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks
from deepdoc.parser import PdfParser, PlainParser
import numpy as np
class Pdf(PdfParser):
def __init__(self):
self.model_speciess = ParserType.PAPER.value
super().__init__()
def __call__(self, filename, binary=None, from_page=0,
to_page=100000, zoomin=3, callback=None):
from timeit import default_timer as timer
start = timer()
callback(msg="OCR started")
self.__images__(
filename if not binary else binary,
zoomin,
from_page,
to_page,
callback
)
callback(msg="OCR finished ({:.2f}s)".format(timer() - start))
start = timer()
self._layouts_rec(zoomin)
callback(0.63, "Layout analysis ({:.2f}s)".format(timer() - start))
logging.debug(f"layouts cost: {timer() - start}s")
start = timer()
self._table_transformer_job(zoomin)
callback(0.68, "Table analysis ({:.2f}s)".format(timer() - start))
start = timer()
self._text_merge()
tbls = self._extract_table_figure(True, zoomin, True, True)
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
self._concat_downward()
self._filter_forpages()
callback(0.75, "Text merged ({:.2f}s)".format(timer() - start))
# clean mess
if column_width < self.page_images[0].size[0] / zoomin / 2:
logging.debug("two_column................... {} {}".format(column_width,
self.page_images[0].size[0] / zoomin / 2))
self.boxes = self.sort_X_by_page(self.boxes, column_width / 2)
for b in self.boxes:
b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())
def _begin(txt):
return re.match(
"[0-9. 一、i]*(introduction|abstract|摘要|引言|keywords|key words|关键词|background|背景|目录|前言|contents)",
txt.lower().strip())
if from_page > 0:
return {
"title": "",
"authors": "",
"abstract": "",
"sections": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes if
re.match(r"(text|title)", b.get("layoutno", "text"))],
"tables": tbls
}
# get title and authors
title = ""
authors = []
i = 0
while i < min(32, len(self.boxes)-1):
b = self.boxes[i]
i += 1
if b.get("layoutno", "").find("title") >= 0:
title = b["text"]
if _begin(title):
title = ""
break
for j in range(3):
if _begin(self.boxes[i + j]["text"]):
break
authors.append(self.boxes[i + j]["text"])
break
break
# get abstract
abstr = ""
i = 0
while i + 1 < min(32, len(self.boxes)):
b = self.boxes[i]
i += 1
txt = b["text"].lower().strip()
if re.match("(abstract|摘要)", txt):
if len(txt.split()) > 32 or len(txt) > 64:
abstr = txt + self._line_tag(b, zoomin)
break
txt = self.boxes[i]["text"].lower().strip()
if len(txt.split()) > 32 or len(txt) > 64:
abstr = txt + self._line_tag(self.boxes[i], zoomin)
i += 1
break
if not abstr:
i = 0
callback(
0.8, "Page {}~{}: Text merging finished".format(
from_page, min(
to_page, self.total_page)))
for b in self.boxes:
logging.debug("{} {}".format(b["text"], b.get("layoutno")))
logging.debug("{}".format(tbls))
return {
"title": title,
"authors": " ".join(authors),
"abstract": abstr,
"sections": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes[i:] if
re.match(r"(text|title)", b.get("layoutno", "text"))],
"tables": tbls
}
def chunk(filename, binary=None, from_page=0, to_page=100000,
lang="Chinese", callback=None, **kwargs):
"""
Only pdf is supported.
The abstract of the paper will be sliced as an entire chunk, and will not be sliced partly.
"""
if re.search(r"\.pdf$", filename, re.IGNORECASE):
if kwargs.get("parser_config", {}).get("layout_recognize", "DeepDOC") == "Plain Text":
pdf_parser = PlainParser()
paper = {
"title": filename,
"authors": " ",
"abstract": "",
"sections": pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page)[0],
"tables": []
}
else:
pdf_parser = Pdf()
paper = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
else:
raise NotImplementedError("file type not supported yet(pdf supported)")
doc = {"docnm_kwd": filename, "authors_tks": rag_tokenizer.tokenize(paper["authors"]),
"title_tks": rag_tokenizer.tokenize(paper["title"] if paper["title"] else filename)}
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
doc["authors_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["authors_tks"])
# is it English
eng = lang.lower() == "english" # pdf_parser.is_english
logging.debug("It's English.....{}".format(eng))
res = tokenize_table(paper["tables"], doc, eng)
if paper["abstract"]:
d = copy.deepcopy(doc)
txt = pdf_parser.remove_tag(paper["abstract"])
d["important_kwd"] = ["abstract", "总结", "概括", "summary", "summarize"]
d["important_tks"] = " ".join(d["important_kwd"])
d["image"], poss = pdf_parser.crop(
paper["abstract"], need_position=True)
add_positions(d, poss)
tokenize(d, txt, eng)
res.append(d)
sorted_sections = paper["sections"]
# set pivot using the most frequent type of title,
# then merge between 2 pivot
bull = bullets_category([txt for txt, _ in sorted_sections])
most_level, levels = title_frequency(bull, sorted_sections)
assert len(sorted_sections) == len(levels)
sec_ids = []
sid = 0
for i, lvl in enumerate(levels):
if lvl <= most_level and i > 0 and lvl != levels[i - 1]:
sid += 1
sec_ids.append(sid)
logging.debug("{} {} {} {}".format(lvl, sorted_sections[i][0], most_level, sid))
chunks = []
last_sid = -2
for (txt, _), sec_id in zip(sorted_sections, sec_ids):
if sec_id == last_sid:
if chunks:
chunks[-1] += "\n" + txt
continue
chunks.append(txt)
last_sid = sec_id
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
return res
"""
readed = [0] * len(paper["lines"])
# find colon firstly
i = 0
while i + 1 < len(paper["lines"]):
txt = pdf_parser.remove_tag(paper["lines"][i][0])
j = i
if txt.strip("\n").strip()[-1] not in ":":
i += 1
continue
i += 1
while i < len(paper["lines"]) and not paper["lines"][i][0]:
i += 1
if i >= len(paper["lines"]): break
proj = [paper["lines"][i][0].strip()]
i += 1
while i < len(paper["lines"]) and paper["lines"][i][0].strip()[0] == proj[-1][0]:
proj.append(paper["lines"][i])
i += 1
for k in range(j, i): readed[k] = True
txt = txt[::-1]
if eng:
r = re.search(r"(.*?) ([\\.;?!]|$)", txt)
txt = r.group(1)[::-1] if r else txt[::-1]
else:
r = re.search(r"(.*?) ([。?;!]|$)", txt)
txt = r.group(1)[::-1] if r else txt[::-1]
for p in proj:
d = copy.deepcopy(doc)
txt += "\n" + pdf_parser.remove_tag(p)
d["image"], poss = pdf_parser.crop(p, need_position=True)
add_positions(d, poss)
tokenize(d, txt, eng)
res.append(d)
i = 0
chunk = []
tk_cnt = 0
def add_chunk():
nonlocal chunk, res, doc, pdf_parser, tk_cnt
d = copy.deepcopy(doc)
ck = "\n".join(chunk)
tokenize(d, pdf_parser.remove_tag(ck), pdf_parser.is_english)
d["image"], poss = pdf_parser.crop(ck, need_position=True)
add_positions(d, poss)
res.append(d)
chunk = []
tk_cnt = 0
while i < len(paper["lines"]):
if tk_cnt > 128:
add_chunk()
if readed[i]:
i += 1
continue
readed[i] = True
txt, layouts = paper["lines"][i]
txt_ = pdf_parser.remove_tag(txt)
i += 1
cnt = num_tokens_from_string(txt_)
if any([
layouts.find("title") >= 0 and chunk,
cnt + tk_cnt > 128 and tk_cnt > 32,
]):
add_chunk()
chunk = [txt]
tk_cnt = cnt
else:
chunk.append(txt)
tk_cnt += cnt
if chunk: add_chunk()
for i, d in enumerate(res):
print(d)
# d["image"].save(f"./logs/{i}.jpg")
return res
"""
if __name__ == "__main__":
import sys
def dummy(prog=None, msg=""):
pass
chunk(sys.argv[1], callback=dummy)