ragflow/rag/llm/chat_model.py
Kevin Hu 156290f8d0
Fix: url path join issue. (#8013)
### What problem does this PR solve?

Close #7980

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-06-03 14:18:40 +08:00

2016 lines
82 KiB
Python

#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import asyncio
import json
import logging
import os
import random
import re
import time
from abc import ABC
from typing import Any, Protocol
from urllib.parse import urljoin
import openai
import requests
from dashscope import Generation
from ollama import Client
from openai import OpenAI
from openai.lib.azure import AzureOpenAI
from zhipuai import ZhipuAI
from rag.nlp import is_chinese, is_english
from rag.utils import num_tokens_from_string
# Error message constants
ERROR_PREFIX = "**ERROR**"
ERROR_RATE_LIMIT = "RATE_LIMIT_EXCEEDED"
ERROR_AUTHENTICATION = "AUTH_ERROR"
ERROR_INVALID_REQUEST = "INVALID_REQUEST"
ERROR_SERVER = "SERVER_ERROR"
ERROR_TIMEOUT = "TIMEOUT"
ERROR_CONNECTION = "CONNECTION_ERROR"
ERROR_MODEL = "MODEL_ERROR"
ERROR_CONTENT_FILTER = "CONTENT_FILTERED"
ERROR_QUOTA = "QUOTA_EXCEEDED"
ERROR_MAX_RETRIES = "MAX_RETRIES_EXCEEDED"
ERROR_GENERIC = "GENERIC_ERROR"
LENGTH_NOTIFICATION_CN = "······\n由于大模型的上下文窗口大小限制,回答已经被大模型截断。"
LENGTH_NOTIFICATION_EN = "...\nThe answer is truncated by your chosen LLM due to its limitation on context length."
class ToolCallSession(Protocol):
def tool_call(self, name: str, arguments: dict[str, Any]) -> str: ...
class Base(ABC):
def __init__(self, key, model_name, base_url):
timeout = int(os.environ.get("LM_TIMEOUT_SECONDS", 600))
self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout)
self.model_name = model_name
# Configure retry parameters
self.max_retries = int(os.environ.get("LLM_MAX_RETRIES", 5))
self.base_delay = float(os.environ.get("LLM_BASE_DELAY", 2.0))
self.is_tools = False
def _get_delay(self, attempt):
"""Calculate retry delay time"""
return self.base_delay * (2**attempt) + random.uniform(0, 0.5)
def _classify_error(self, error):
"""Classify error based on error message content"""
error_str = str(error).lower()
if "rate limit" in error_str or "429" in error_str or "tpm limit" in error_str or "too many requests" in error_str or "requests per minute" in error_str:
return ERROR_RATE_LIMIT
elif "auth" in error_str or "key" in error_str or "apikey" in error_str or "401" in error_str or "forbidden" in error_str or "permission" in error_str:
return ERROR_AUTHENTICATION
elif "invalid" in error_str or "bad request" in error_str or "400" in error_str or "format" in error_str or "malformed" in error_str or "parameter" in error_str:
return ERROR_INVALID_REQUEST
elif "server" in error_str or "502" in error_str or "503" in error_str or "504" in error_str or "500" in error_str or "unavailable" in error_str:
return ERROR_SERVER
elif "timeout" in error_str or "timed out" in error_str:
return ERROR_TIMEOUT
elif "connect" in error_str or "network" in error_str or "unreachable" in error_str or "dns" in error_str:
return ERROR_CONNECTION
elif "quota" in error_str or "capacity" in error_str or "credit" in error_str or "billing" in error_str or "limit" in error_str and "rate" not in error_str:
return ERROR_QUOTA
elif "filter" in error_str or "content" in error_str or "policy" in error_str or "blocked" in error_str or "safety" in error_str or "inappropriate" in error_str:
return ERROR_CONTENT_FILTER
elif "model" in error_str or "not found" in error_str or "does not exist" in error_str or "not available" in error_str:
return ERROR_MODEL
else:
return ERROR_GENERIC
def bind_tools(self, toolcall_session, tools):
if not (toolcall_session and tools):
return
self.is_tools = True
self.toolcall_session = toolcall_session
self.tools = tools
def chat_with_tools(self, system: str, history: list, gen_conf: dict):
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
tools = self.tools
if system:
history.insert(0, {"role": "system", "content": system})
ans = ""
tk_count = 0
# Implement exponential backoff retry strategy
for attempt in range(self.max_retries):
try:
response = self.client.chat.completions.create(model=self.model_name, messages=history, tools=tools, **gen_conf)
assistant_output = response.choices[0].message
if not ans and "tool_calls" not in assistant_output and "reasoning_content" in assistant_output:
ans += "<think>" + ans + "</think>"
ans += response.choices[0].message.content
if not response.choices[0].message.tool_calls:
tk_count += self.total_token_count(response)
if response.choices[0].finish_reason == "length":
if is_chinese([ans]):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, tk_count
tk_count += self.total_token_count(response)
history.append(assistant_output)
for tool_call in response.choices[0].message.tool_calls:
name = tool_call.function.name
args = json.loads(tool_call.function.arguments)
tool_response = self.toolcall_session.tool_call(name, args)
# if tool_response.choices[0].finish_reason == "length":
# if is_chinese(ans):
# ans += LENGTH_NOTIFICATION_CN
# else:
# ans += LENGTH_NOTIFICATION_EN
# return ans, tk_count + self.total_token_count(tool_response)
history.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_response)})
final_response = self.client.chat.completions.create(model=self.model_name, messages=history, tools=tools, **gen_conf)
assistant_output = final_response.choices[0].message
if "tool_calls" not in assistant_output and "reasoning_content" in assistant_output:
ans += "<think>" + ans + "</think>"
ans += final_response.choices[0].message.content
if final_response.choices[0].finish_reason == "length":
tk_count += self.total_token_count(response)
if is_chinese([ans]):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, tk_count
return ans, tk_count
except Exception as e:
logging.exception("OpenAI cat_with_tools")
# Classify the error
error_code = self._classify_error(e)
# Check if it's a rate limit error or server error and not the last attempt
should_retry = (error_code == ERROR_RATE_LIMIT or error_code == ERROR_SERVER) and attempt < self.max_retries - 1
if should_retry:
delay = self._get_delay(attempt)
logging.warning(f"Error: {error_code}. Retrying in {delay:.2f} seconds... (Attempt {attempt + 1}/{self.max_retries})")
time.sleep(delay)
else:
# For non-rate limit errors or the last attempt, return an error message
if attempt == self.max_retries - 1:
error_code = ERROR_MAX_RETRIES
return f"{ERROR_PREFIX}: {error_code} - {str(e)}", 0
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
# Implement exponential backoff retry strategy
for attempt in range(self.max_retries):
try:
response = self.client.chat.completions.create(model=self.model_name, messages=history, **gen_conf)
if any([not response.choices, not response.choices[0].message, not response.choices[0].message.content]):
return "", 0
ans = response.choices[0].message.content.strip()
if response.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, self.total_token_count(response)
except Exception as e:
logging.exception("chat_model.Base.chat got exception")
# Classify the error
error_code = self._classify_error(e)
# Check if it's a rate limit error or server error and not the last attempt
should_retry = (error_code == ERROR_RATE_LIMIT or error_code == ERROR_SERVER) and attempt < self.max_retries - 1
if should_retry:
delay = self._get_delay(attempt)
logging.warning(f"Error: {error_code}. Retrying in {delay:.2f} seconds... (Attempt {attempt + 1}/{self.max_retries})")
time.sleep(delay)
else:
# For non-rate limit errors or the last attempt, return an error message
if attempt == self.max_retries - 1:
error_code = ERROR_MAX_RETRIES
return f"{ERROR_PREFIX}: {error_code} - {str(e)}", 0
def _wrap_toolcall_message(self, stream):
final_tool_calls = {}
for chunk in stream:
for tool_call in chunk.choices[0].delta.tool_calls or []:
index = tool_call.index
if index not in final_tool_calls:
final_tool_calls[index] = tool_call
final_tool_calls[index].function.arguments += tool_call.function.arguments
return final_tool_calls
def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict):
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
tools = self.tools
if system:
history.insert(0, {"role": "system", "content": system})
ans = ""
total_tokens = 0
reasoning_start = False
finish_completion = False
final_tool_calls = {}
try:
response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, tools=tools, **gen_conf)
while not finish_completion:
for resp in response:
if resp.choices[0].delta.tool_calls:
for tool_call in resp.choices[0].delta.tool_calls or []:
index = tool_call.index
if index not in final_tool_calls:
final_tool_calls[index] = tool_call
else:
final_tool_calls[index].function.arguments += tool_call.function.arguments
else:
if not resp.choices:
continue
if not resp.choices[0].delta.content:
resp.choices[0].delta.content = ""
if hasattr(resp.choices[0].delta, "reasoning_content") and resp.choices[0].delta.reasoning_content:
ans = ""
if not reasoning_start:
reasoning_start = True
ans = "<think>"
ans += resp.choices[0].delta.reasoning_content + "</think>"
else:
reasoning_start = False
ans = resp.choices[0].delta.content
tol = self.total_token_count(resp)
if not tol:
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
else:
total_tokens += tol
finish_reason = resp.choices[0].finish_reason
if finish_reason == "tool_calls" and final_tool_calls:
for tool_call in final_tool_calls.values():
name = tool_call.function.name
try:
args = json.loads(tool_call.function.arguments)
except Exception as e:
logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}")
yield ans + "\n**ERROR**: " + str(e)
finish_completion = True
break
tool_response = self.toolcall_session.tool_call(name, args)
history.append(
{
"role": "assistant",
"tool_calls": [
{
"index": tool_call.index,
"id": tool_call.id,
"function": {
"name": tool_call.function.name,
"arguments": tool_call.function.arguments,
},
"type": "function",
},
],
}
)
# if tool_response.choices[0].finish_reason == "length":
# if is_chinese(ans):
# ans += LENGTH_NOTIFICATION_CN
# else:
# ans += LENGTH_NOTIFICATION_EN
# return ans, total_tokens + self.total_token_count(tool_response)
history.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_response)})
final_tool_calls = {}
response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, tools=tools, **gen_conf)
continue
if finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, total_tokens
if finish_reason == "stop":
finish_completion = True
yield ans
break
yield ans
continue
except openai.APIError as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
ans = ""
total_tokens = 0
reasoning_start = False
try:
response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf)
for resp in response:
if not resp.choices:
continue
if not resp.choices[0].delta.content:
resp.choices[0].delta.content = ""
if hasattr(resp.choices[0].delta, "reasoning_content") and resp.choices[0].delta.reasoning_content:
ans = ""
if not reasoning_start:
reasoning_start = True
ans = "<think>"
ans += resp.choices[0].delta.reasoning_content + "</think>"
else:
reasoning_start = False
ans = resp.choices[0].delta.content
tol = self.total_token_count(resp)
if not tol:
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
else:
total_tokens += tol
if resp.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
yield ans
except openai.APIError as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
def total_token_count(self, resp):
try:
return resp.usage.total_tokens
except Exception:
pass
try:
return resp["usage"]["total_tokens"]
except Exception:
pass
return 0
def _calculate_dynamic_ctx(self, history):
"""Calculate dynamic context window size"""
def count_tokens(text):
"""Calculate token count for text"""
# Simple calculation: 1 token per ASCII character
# 2 tokens for non-ASCII characters (Chinese, Japanese, Korean, etc.)
total = 0
for char in text:
if ord(char) < 128: # ASCII characters
total += 1
else: # Non-ASCII characters (Chinese, Japanese, Korean, etc.)
total += 2
return total
# Calculate total tokens for all messages
total_tokens = 0
for message in history:
content = message.get("content", "")
# Calculate content tokens
content_tokens = count_tokens(content)
# Add role marker token overhead
role_tokens = 4
total_tokens += content_tokens + role_tokens
# Apply 1.2x buffer ratio
total_tokens_with_buffer = int(total_tokens * 1.2)
if total_tokens_with_buffer <= 8192:
ctx_size = 8192
else:
ctx_multiplier = (total_tokens_with_buffer // 8192) + 1
ctx_size = ctx_multiplier * 8192
return ctx_size
class GptTurbo(Base):
def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
if not base_url:
base_url = "https://api.openai.com/v1"
super().__init__(key, model_name, base_url)
class MoonshotChat(Base):
def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"):
if not base_url:
base_url = "https://api.moonshot.cn/v1"
super().__init__(key, model_name, base_url)
class XinferenceChat(Base):
def __init__(self, key=None, model_name="", base_url=""):
if not base_url:
raise ValueError("Local llm url cannot be None")
base_url = urljoin(base_url, "v1")
super().__init__(key, model_name, base_url)
class HuggingFaceChat(Base):
def __init__(self, key=None, model_name="", base_url=""):
if not base_url:
raise ValueError("Local llm url cannot be None")
base_url = urljoin(base_url, "v1")
super().__init__(key, model_name.split("___")[0], base_url)
class ModelScopeChat(Base):
def __init__(self, key=None, model_name="", base_url=""):
if not base_url:
raise ValueError("Local llm url cannot be None")
base_url = urljoin(base_url, "v1")
super().__init__(key, model_name.split("___")[0], base_url)
class DeepSeekChat(Base):
def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1"):
if not base_url:
base_url = "https://api.deepseek.com/v1"
super().__init__(key, model_name, base_url)
class AzureChat(Base):
def __init__(self, key, model_name, **kwargs):
api_key = json.loads(key).get("api_key", "")
api_version = json.loads(key).get("api_version", "2024-02-01")
super().__init__(key, model_name, kwargs["base_url"])
self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
self.model_name = model_name
class BaiChuanChat(Base):
def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1"):
if not base_url:
base_url = "https://api.baichuan-ai.com/v1"
super().__init__(key, model_name, base_url)
@staticmethod
def _format_params(params):
return {
"temperature": params.get("temperature", 0.3),
"top_p": params.get("top_p", 0.85),
}
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
extra_body={"tools": [{"type": "web_search", "web_search": {"enable": True, "search_mode": "performance_first"}}]},
**self._format_params(gen_conf),
)
ans = response.choices[0].message.content.strip()
if response.choices[0].finish_reason == "length":
if is_chinese([ans]):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, self.total_token_count(response)
except openai.APIError as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
ans = ""
total_tokens = 0
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
extra_body={"tools": [{"type": "web_search", "web_search": {"enable": True, "search_mode": "performance_first"}}]},
stream=True,
**self._format_params(gen_conf),
)
for resp in response:
if not resp.choices:
continue
if not resp.choices[0].delta.content:
resp.choices[0].delta.content = ""
ans = resp.choices[0].delta.content
tol = self.total_token_count(resp)
if not tol:
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
else:
total_tokens = tol
if resp.choices[0].finish_reason == "length":
if is_chinese([ans]):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class QWenChat(Base):
def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs):
super().__init__(key, model_name, base_url=None)
import dashscope
dashscope.api_key = key
self.model_name = model_name
if self.is_reasoning_model(self.model_name) or self.model_name in ["qwen-vl-plus", "qwen-vl-plus-latest", "qwen-vl-max", "qwen-vl-max-latest"]:
super().__init__(key, model_name, "https://dashscope.aliyuncs.com/compatible-mode/v1")
def chat_with_tools(self, system: str, history: list, gen_conf: dict) -> tuple[str, int]:
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
# if self.is_reasoning_model(self.model_name):
# return super().chat(system, history, gen_conf)
stream_flag = str(os.environ.get("QWEN_CHAT_BY_STREAM", "true")).lower() == "true"
if not stream_flag:
from http import HTTPStatus
tools = self.tools
if system:
history.insert(0, {"role": "system", "content": system})
response = Generation.call(self.model_name, messages=history, result_format="message", tools=tools, **gen_conf)
ans = ""
tk_count = 0
if response.status_code == HTTPStatus.OK:
assistant_output = response.output.choices[0].message
if not ans and "tool_calls" not in assistant_output and "reasoning_content" in assistant_output:
ans += "<think>" + ans + "</think>"
ans += response.output.choices[0].message.content
if "tool_calls" not in assistant_output:
tk_count += self.total_token_count(response)
if response.output.choices[0].get("finish_reason", "") == "length":
if is_chinese([ans]):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, tk_count
tk_count += self.total_token_count(response)
history.append(assistant_output)
while "tool_calls" in assistant_output:
tool_info = {"content": "", "role": "tool", "tool_call_id": assistant_output.tool_calls[0]["id"]}
tool_name = assistant_output.tool_calls[0]["function"]["name"]
if tool_name:
arguments = json.loads(assistant_output.tool_calls[0]["function"]["arguments"])
tool_info["content"] = self.toolcall_session.tool_call(name=tool_name, arguments=arguments)
history.append(tool_info)
response = Generation.call(self.model_name, messages=history, result_format="message", tools=self.tools, **gen_conf)
if response.output.choices[0].get("finish_reason", "") == "length":
tk_count += self.total_token_count(response)
if is_chinese([ans]):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, tk_count
tk_count += self.total_token_count(response)
assistant_output = response.output.choices[0].message
if assistant_output.content is None:
assistant_output.content = ""
history.append(response)
ans += assistant_output["content"]
return ans, tk_count
else:
return "**ERROR**: " + response.message, tk_count
else:
result_list = []
for result in self._chat_streamly_with_tools(system, history, gen_conf, incremental_output=True):
result_list.append(result)
error_msg_list = [result for result in result_list if str(result).find("**ERROR**") >= 0]
if len(error_msg_list) > 0:
return "**ERROR**: " + "".join(error_msg_list), 0
else:
return "".join(result_list[:-1]), result_list[-1]
def chat(self, system, history, gen_conf):
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
if self.is_reasoning_model(self.model_name) or self.model_name in ["qwen-vl-plus", "qwen-vl-plus-latest", "qwen-vl-max", "qwen-vl-max-latest"]:
return super().chat(system, history, gen_conf)
stream_flag = str(os.environ.get("QWEN_CHAT_BY_STREAM", "true")).lower() == "true"
if not stream_flag:
from http import HTTPStatus
if system:
history.insert(0, {"role": "system", "content": system})
response = Generation.call(self.model_name, messages=history, result_format="message", **gen_conf)
ans = ""
tk_count = 0
if response.status_code == HTTPStatus.OK:
ans += response.output.choices[0]["message"]["content"]
tk_count += self.total_token_count(response)
if response.output.choices[0].get("finish_reason", "") == "length":
if is_chinese([ans]):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, tk_count
return "**ERROR**: " + response.message, tk_count
else:
g = self._chat_streamly(system, history, gen_conf, incremental_output=True)
result_list = list(g)
error_msg_list = [item for item in result_list if str(item).find("**ERROR**") >= 0]
if len(error_msg_list) > 0:
return "**ERROR**: " + "".join(error_msg_list), 0
else:
return "".join(result_list[:-1]), result_list[-1]
def _wrap_toolcall_message(self, old_message, message):
if not old_message:
return message
tool_call_id = message["tool_calls"][0].get("id")
if tool_call_id:
old_message.tool_calls[0]["id"] = tool_call_id
function = message.tool_calls[0]["function"]
if function:
if function.get("name"):
old_message.tool_calls[0]["function"]["name"] = function["name"]
if function.get("arguments"):
old_message.tool_calls[0]["function"]["arguments"] += function["arguments"]
return old_message
def _chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict, incremental_output=True):
from http import HTTPStatus
if system:
history.insert(0, {"role": "system", "content": system})
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
ans = ""
tk_count = 0
try:
response = Generation.call(self.model_name, messages=history, result_format="message", tools=self.tools, stream=True, incremental_output=incremental_output, **gen_conf)
tool_info = {"content": "", "role": "tool"}
toolcall_message = None
tool_name = ""
tool_arguments = ""
finish_completion = False
reasoning_start = False
while not finish_completion:
for resp in response:
if resp.status_code == HTTPStatus.OK:
assistant_output = resp.output.choices[0].message
ans = resp.output.choices[0].message.content
if not ans and "tool_calls" not in assistant_output and "reasoning_content" in assistant_output:
ans = resp.output.choices[0].message.reasoning_content
if not reasoning_start:
reasoning_start = True
ans = "<think>" + ans
else:
ans = ans + "</think>"
if "tool_calls" not in assistant_output:
reasoning_start = False
tk_count += self.total_token_count(resp)
if resp.output.choices[0].get("finish_reason", "") == "length":
if is_chinese([ans]):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
finish_reason = resp.output.choices[0]["finish_reason"]
if finish_reason == "stop":
finish_completion = True
yield ans
break
yield ans
continue
tk_count += self.total_token_count(resp)
toolcall_message = self._wrap_toolcall_message(toolcall_message, assistant_output)
if "tool_calls" in assistant_output:
tool_call_finish_reason = resp.output.choices[0]["finish_reason"]
if tool_call_finish_reason == "tool_calls":
try:
tool_arguments = json.loads(toolcall_message.tool_calls[0]["function"]["arguments"])
except Exception as e:
logging.exception(msg="_chat_streamly_with_tool tool call error")
yield ans + "\n**ERROR**: " + str(e)
finish_completion = True
break
tool_name = toolcall_message.tool_calls[0]["function"]["name"]
history.append(toolcall_message)
tool_info["content"] = self.toolcall_session.tool_call(name=tool_name, arguments=tool_arguments)
history.append(tool_info)
tool_info = {"content": "", "role": "tool"}
tool_name = ""
tool_arguments = ""
toolcall_message = None
response = Generation.call(self.model_name, messages=history, result_format="message", tools=self.tools, stream=True, incremental_output=incremental_output, **gen_conf)
else:
yield (
ans + "\n**ERROR**: " + resp.output.choices[0].message
if not re.search(r" (key|quota)", str(resp.message).lower())
else "Out of credit. Please set the API key in **settings > Model providers.**"
)
except Exception as e:
logging.exception(msg="_chat_streamly_with_tool")
yield ans + "\n**ERROR**: " + str(e)
yield tk_count
def _chat_streamly(self, system, history, gen_conf, incremental_output=True):
from http import HTTPStatus
if system:
history.insert(0, {"role": "system", "content": system})
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
ans = ""
tk_count = 0
try:
response = Generation.call(self.model_name, messages=history, result_format="message", stream=True, incremental_output=incremental_output, **gen_conf)
for resp in response:
if resp.status_code == HTTPStatus.OK:
ans = resp.output.choices[0]["message"]["content"]
tk_count = self.total_token_count(resp)
if resp.output.choices[0].get("finish_reason", "") == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
yield ans
else:
yield (
ans + "\n**ERROR**: " + resp.message
if not re.search(r" (key|quota)", str(resp.message).lower())
else "Out of credit. Please set the API key in **settings > Model providers.**"
)
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield tk_count
def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict, incremental_output=True):
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
for txt in self._chat_streamly_with_tools(system, history, gen_conf, incremental_output=incremental_output):
yield txt
def chat_streamly(self, system, history, gen_conf):
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
if self.is_reasoning_model(self.model_name) or self.model_name in ["qwen-vl-plus", "qwen-vl-plus-latest", "qwen-vl-max", "qwen-vl-max-latest"]:
return super().chat_streamly(system, history, gen_conf)
return self._chat_streamly(system, history, gen_conf)
@staticmethod
def is_reasoning_model(model_name: str) -> bool:
return any(
[
model_name.lower().find("deepseek") >= 0,
model_name.lower().find("qwq") >= 0 and model_name.lower() != "qwq-32b-preview",
]
)
class ZhipuChat(Base):
def __init__(self, key, model_name="glm-3-turbo", **kwargs):
super().__init__(key, model_name, base_url=None)
self.client = ZhipuAI(api_key=key)
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
try:
if "presence_penalty" in gen_conf:
del gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf:
del gen_conf["frequency_penalty"]
response = self.client.chat.completions.create(model=self.model_name, messages=history, **gen_conf)
ans = response.choices[0].message.content.strip()
if response.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, self.total_token_count(response)
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_with_tools(self, system: str, history: list, gen_conf: dict):
if "presence_penalty" in gen_conf:
del gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf:
del gen_conf["frequency_penalty"]
return super().chat_with_tools(system, history, gen_conf)
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
if "presence_penalty" in gen_conf:
del gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf:
del gen_conf["frequency_penalty"]
ans = ""
tk_count = 0
try:
response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf)
for resp in response:
if not resp.choices[0].delta.content:
continue
delta = resp.choices[0].delta.content
ans = delta
if resp.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
tk_count = self.total_token_count(resp)
if resp.choices[0].finish_reason == "stop":
tk_count = self.total_token_count(resp)
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield tk_count
def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict):
if "presence_penalty" in gen_conf:
del gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf:
del gen_conf["frequency_penalty"]
return super().chat_streamly_with_tools(system, history, gen_conf)
class OllamaChat(Base):
def __init__(self, key, model_name, **kwargs):
super().__init__(key, model_name, base_url=None)
self.client = Client(host=kwargs["base_url"]) if not key or key == "x" else Client(host=kwargs["base_url"], headers={"Authorization": f"Bearer {key}"})
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
try:
# Calculate context size
ctx_size = self._calculate_dynamic_ctx(history)
options = {"num_ctx": ctx_size}
if "temperature" in gen_conf:
options["temperature"] = gen_conf["temperature"]
if "max_tokens" in gen_conf:
options["num_predict"] = gen_conf["max_tokens"]
if "top_p" in gen_conf:
options["top_p"] = gen_conf["top_p"]
if "presence_penalty" in gen_conf:
options["presence_penalty"] = gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf:
options["frequency_penalty"] = gen_conf["frequency_penalty"]
response = self.client.chat(model=self.model_name, messages=history, options=options)
ans = response["message"]["content"].strip()
token_count = response.get("eval_count", 0) + response.get("prompt_eval_count", 0)
return ans, token_count
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
try:
# Calculate context size
ctx_size = self._calculate_dynamic_ctx(history)
options = {"num_ctx": ctx_size}
if "temperature" in gen_conf:
options["temperature"] = gen_conf["temperature"]
if "max_tokens" in gen_conf:
options["num_predict"] = gen_conf["max_tokens"]
if "top_p" in gen_conf:
options["top_p"] = gen_conf["top_p"]
if "presence_penalty" in gen_conf:
options["presence_penalty"] = gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf:
options["frequency_penalty"] = gen_conf["frequency_penalty"]
ans = ""
try:
response = self.client.chat(model=self.model_name, messages=history, stream=True, options=options)
for resp in response:
if resp["done"]:
token_count = resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
yield token_count
ans = resp["message"]["content"]
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield 0
except Exception as e:
yield "**ERROR**: " + str(e)
yield 0
class LocalAIChat(Base):
def __init__(self, key, model_name, base_url):
super().__init__(key, model_name, base_url=None)
if not base_url:
raise ValueError("Local llm url cannot be None")
base_url = urljoin(base_url, "v1")
self.client = OpenAI(api_key="empty", base_url=base_url)
self.model_name = model_name.split("___")[0]
class LocalLLM(Base):
class RPCProxy:
def __init__(self, host, port):
self.host = host
self.port = int(port)
self.__conn()
def __conn(self):
from multiprocessing.connection import Client
self._connection = Client((self.host, self.port), authkey=b"infiniflow-token4kevinhu")
def __getattr__(self, name):
import pickle
def do_rpc(*args, **kwargs):
for _ in range(3):
try:
self._connection.send(pickle.dumps((name, args, kwargs)))
return pickle.loads(self._connection.recv())
except Exception:
self.__conn()
raise Exception("RPC connection lost!")
return do_rpc
def __init__(self, key, model_name):
super().__init__(key, model_name, base_url=None)
from jina import Client
self.client = Client(port=12345, protocol="grpc", asyncio=True)
def _prepare_prompt(self, system, history, gen_conf):
from rag.svr.jina_server import Prompt
if system:
history.insert(0, {"role": "system", "content": system})
return Prompt(message=history, gen_conf=gen_conf)
def _stream_response(self, endpoint, prompt):
from rag.svr.jina_server import Generation
answer = ""
try:
res = self.client.stream_doc(on=endpoint, inputs=prompt, return_type=Generation)
loop = asyncio.get_event_loop()
try:
while True:
answer = loop.run_until_complete(res.__anext__()).text
yield answer
except StopAsyncIteration:
pass
except Exception as e:
yield answer + "\n**ERROR**: " + str(e)
yield num_tokens_from_string(answer)
def chat(self, system, history, gen_conf):
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
prompt = self._prepare_prompt(system, history, gen_conf)
chat_gen = self._stream_response("/chat", prompt)
ans = next(chat_gen)
total_tokens = next(chat_gen)
return ans, total_tokens
def chat_streamly(self, system, history, gen_conf):
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
prompt = self._prepare_prompt(system, history, gen_conf)
return self._stream_response("/stream", prompt)
class VolcEngineChat(Base):
def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3"):
super().__init__(key, model_name, base_url=None)
"""
Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special,
Assemble ark_api_key, ep_id into api_key, store it as a dictionary type, and parse it for use
model_name is for display only
"""
base_url = base_url if base_url else "https://ark.cn-beijing.volces.com/api/v3"
ark_api_key = json.loads(key).get("ark_api_key", "")
model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "")
super().__init__(ark_api_key, model_name, base_url)
class MiniMaxChat(Base):
def __init__(
self,
key,
model_name,
base_url="https://api.minimax.chat/v1/text/chatcompletion_v2",
):
super().__init__(key, model_name, base_url=None)
if not base_url:
base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2"
self.base_url = base_url
self.model_name = model_name
self.api_key = key
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
payload = json.dumps({"model": self.model_name, "messages": history, **gen_conf})
try:
response = requests.request("POST", url=self.base_url, headers=headers, data=payload)
response = response.json()
ans = response["choices"][0]["message"]["content"].strip()
if response["choices"][0]["finish_reason"] == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, self.total_token_count(response)
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
ans = ""
total_tokens = 0
try:
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
payload = json.dumps(
{
"model": self.model_name,
"messages": history,
"stream": True,
**gen_conf,
}
)
response = requests.request(
"POST",
url=self.base_url,
headers=headers,
data=payload,
)
for resp in response.text.split("\n\n")[:-1]:
resp = json.loads(resp[6:])
text = ""
if "choices" in resp and "delta" in resp["choices"][0]:
text = resp["choices"][0]["delta"]["content"]
ans = text
tol = self.total_token_count(resp)
if not tol:
total_tokens += num_tokens_from_string(text)
else:
total_tokens = tol
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class MistralChat(Base):
def __init__(self, key, model_name, base_url=None):
super().__init__(key, model_name, base_url=None)
from mistralai.client import MistralClient
self.client = MistralClient(api_key=key)
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
try:
response = self.client.chat(model=self.model_name, messages=history, **gen_conf)
ans = response.choices[0].message.content
if response.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, self.total_token_count(response)
except openai.APIError as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
ans = ""
total_tokens = 0
try:
response = self.client.chat_stream(model=self.model_name, messages=history, **gen_conf)
for resp in response:
if not resp.choices or not resp.choices[0].delta.content:
continue
ans = resp.choices[0].delta.content
total_tokens += 1
if resp.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
yield ans
except openai.APIError as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class BedrockChat(Base):
def __init__(self, key, model_name, **kwargs):
super().__init__(key, model_name, base_url=None)
import boto3
self.bedrock_ak = json.loads(key).get("bedrock_ak", "")
self.bedrock_sk = json.loads(key).get("bedrock_sk", "")
self.bedrock_region = json.loads(key).get("bedrock_region", "")
self.model_name = model_name
if self.bedrock_ak == "" or self.bedrock_sk == "" or self.bedrock_region == "":
# Try to create a client using the default credentials (AWS_PROFILE, AWS_DEFAULT_REGION, etc.)
self.client = boto3.client("bedrock-runtime")
else:
self.client = boto3.client(service_name="bedrock-runtime", region_name=self.bedrock_region, aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
def chat(self, system, history, gen_conf):
from botocore.exceptions import ClientError
for k in list(gen_conf.keys()):
if k not in ["temperature"]:
del gen_conf[k]
for item in history:
if not isinstance(item["content"], list) and not isinstance(item["content"], tuple):
item["content"] = [{"text": item["content"]}]
try:
# Send the message to the model, using a basic inference configuration.
response = self.client.converse(
modelId=self.model_name,
messages=history,
inferenceConfig=gen_conf,
system=[{"text": (system if system else "Answer the user's message.")}],
)
# Extract and print the response text.
ans = response["output"]["message"]["content"][0]["text"]
return ans, num_tokens_from_string(ans)
except (ClientError, Exception) as e:
return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
def chat_streamly(self, system, history, gen_conf):
from botocore.exceptions import ClientError
for k in list(gen_conf.keys()):
if k not in ["temperature"]:
del gen_conf[k]
for item in history:
if not isinstance(item["content"], list) and not isinstance(item["content"], tuple):
item["content"] = [{"text": item["content"]}]
if self.model_name.split(".")[0] == "ai21":
try:
response = self.client.converse(modelId=self.model_name, messages=history, inferenceConfig=gen_conf, system=[{"text": (system if system else "Answer the user's message.")}])
ans = response["output"]["message"]["content"][0]["text"]
return ans, num_tokens_from_string(ans)
except (ClientError, Exception) as e:
return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
ans = ""
try:
# Send the message to the model, using a basic inference configuration.
streaming_response = self.client.converse_stream(
modelId=self.model_name, messages=history, inferenceConfig=gen_conf, system=[{"text": (system if system else "Answer the user's message.")}]
)
# Extract and print the streamed response text in real-time.
for resp in streaming_response["stream"]:
if "contentBlockDelta" in resp:
ans = resp["contentBlockDelta"]["delta"]["text"]
yield ans
except (ClientError, Exception) as e:
yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}"
yield num_tokens_from_string(ans)
class GeminiChat(Base):
def __init__(self, key, model_name, base_url=None):
super().__init__(key, model_name, base_url=None)
from google.generativeai import GenerativeModel, client
client.configure(api_key=key)
_client = client.get_default_generative_client()
self.model_name = "models/" + model_name
self.model = GenerativeModel(model_name=self.model_name)
self.model._client = _client
def chat(self, system, history, gen_conf):
from google.generativeai.types import content_types
if system:
self.model._system_instruction = content_types.to_content(system)
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
for item in history:
if "role" in item and item["role"] == "assistant":
item["role"] = "model"
if "role" in item and item["role"] == "system":
item["role"] = "user"
if "content" in item:
item["parts"] = item.pop("content")
try:
response = self.model.generate_content(history, generation_config=gen_conf)
ans = response.text
return ans, response.usage_metadata.total_token_count
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
from google.generativeai.types import content_types
if system:
self.model._system_instruction = content_types.to_content(system)
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
for item in history:
if "role" in item and item["role"] == "assistant":
item["role"] = "model"
if "content" in item:
item["parts"] = item.pop("content")
ans = ""
try:
response = self.model.generate_content(history, generation_config=gen_conf, stream=True)
for resp in response:
ans = resp.text
yield ans
yield response._chunks[-1].usage_metadata.total_token_count
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield 0
class GroqChat(Base):
def __init__(self, key, model_name, base_url=""):
super().__init__(key, model_name, base_url=None)
from groq import Groq
self.client = Groq(api_key=key)
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
ans = ""
try:
response = self.client.chat.completions.create(model=self.model_name, messages=history, **gen_conf)
ans = response.choices[0].message.content
if response.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, self.total_token_count(response)
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
ans = ""
total_tokens = 0
try:
response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf)
for resp in response:
if not resp.choices or not resp.choices[0].delta.content:
continue
ans = resp.choices[0].delta.content
total_tokens += 1
if resp.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
## openrouter
class OpenRouterChat(Base):
def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"):
if not base_url:
base_url = "https://openrouter.ai/api/v1"
super().__init__(key, model_name, base_url)
class StepFunChat(Base):
def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1"):
if not base_url:
base_url = "https://api.stepfun.com/v1"
super().__init__(key, model_name, base_url)
class NvidiaChat(Base):
def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1"):
if not base_url:
base_url = "https://integrate.api.nvidia.com/v1"
super().__init__(key, model_name, base_url)
class LmStudioChat(Base):
def __init__(self, key, model_name, base_url):
if not base_url:
raise ValueError("Local llm url cannot be None")
base_url = urljoin(base_url, "v1")
super().__init__(key, model_name, base_url)
self.client = OpenAI(api_key="lm-studio", base_url=base_url)
self.model_name = model_name
class OpenAI_APIChat(Base):
def __init__(self, key, model_name, base_url):
if not base_url:
raise ValueError("url cannot be None")
model_name = model_name.split("___")[0]
super().__init__(key, model_name, base_url)
class PPIOChat(Base):
def __init__(self, key, model_name, base_url="https://api.ppinfra.com/v3/openai"):
if not base_url:
base_url = "https://api.ppinfra.com/v3/openai"
super().__init__(key, model_name, base_url)
class CoHereChat(Base):
def __init__(self, key, model_name, base_url=""):
super().__init__(key, model_name, base_url=None)
from cohere import Client
self.client = Client(api_key=key)
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
if "top_p" in gen_conf:
gen_conf["p"] = gen_conf.pop("top_p")
if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
gen_conf.pop("presence_penalty")
for item in history:
if "role" in item and item["role"] == "user":
item["role"] = "USER"
if "role" in item and item["role"] == "assistant":
item["role"] = "CHATBOT"
if "content" in item:
item["message"] = item.pop("content")
mes = history.pop()["message"]
ans = ""
try:
response = self.client.chat(model=self.model_name, chat_history=history, message=mes, **gen_conf)
ans = response.text
if response.finish_reason == "MAX_TOKENS":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
return (
ans,
response.meta.tokens.input_tokens + response.meta.tokens.output_tokens,
)
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
if "top_p" in gen_conf:
gen_conf["p"] = gen_conf.pop("top_p")
if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
gen_conf.pop("presence_penalty")
for item in history:
if "role" in item and item["role"] == "user":
item["role"] = "USER"
if "role" in item and item["role"] == "assistant":
item["role"] = "CHATBOT"
if "content" in item:
item["message"] = item.pop("content")
mes = history.pop()["message"]
ans = ""
total_tokens = 0
try:
response = self.client.chat_stream(model=self.model_name, chat_history=history, message=mes, **gen_conf)
for resp in response:
if resp.event_type == "text-generation":
ans = resp.text
total_tokens += num_tokens_from_string(resp.text)
elif resp.event_type == "stream-end":
if resp.finish_reason == "MAX_TOKENS":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class LeptonAIChat(Base):
def __init__(self, key, model_name, base_url=None):
if not base_url:
base_url = urljoin("https://" + model_name + ".lepton.run", "api/v1")
super().__init__(key, model_name, base_url)
class TogetherAIChat(Base):
def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
if not base_url:
base_url = "https://api.together.xyz/v1"
super().__init__(key, model_name, base_url)
class PerfXCloudChat(Base):
def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
if not base_url:
base_url = "https://cloud.perfxlab.cn/v1"
super().__init__(key, model_name, base_url)
class UpstageChat(Base):
def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
if not base_url:
base_url = "https://api.upstage.ai/v1/solar"
super().__init__(key, model_name, base_url)
class NovitaAIChat(Base):
def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai"):
if not base_url:
base_url = "https://api.novita.ai/v3/openai"
super().__init__(key, model_name, base_url)
class SILICONFLOWChat(Base):
def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1"):
if not base_url:
base_url = "https://api.siliconflow.cn/v1"
super().__init__(key, model_name, base_url)
class YiChat(Base):
def __init__(self, key, model_name, base_url="https://api.lingyiwanwu.com/v1"):
if not base_url:
base_url = "https://api.lingyiwanwu.com/v1"
super().__init__(key, model_name, base_url)
class ReplicateChat(Base):
def __init__(self, key, model_name, base_url=None):
super().__init__(key, model_name, base_url=None)
from replicate.client import Client
self.model_name = model_name
self.client = Client(api_token=key)
self.system = ""
def chat(self, system, history, gen_conf):
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
if system:
self.system = system
prompt = "\n".join([item["role"] + ":" + item["content"] for item in history[-5:]])
ans = ""
try:
response = self.client.run(
self.model_name,
input={"system_prompt": self.system, "prompt": prompt, **gen_conf},
)
ans = "".join(response)
return ans, num_tokens_from_string(ans)
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
if system:
self.system = system
prompt = "\n".join([item["role"] + ":" + item["content"] for item in history[-5:]])
ans = ""
try:
response = self.client.run(
self.model_name,
input={"system_prompt": self.system, "prompt": prompt, **gen_conf},
)
for resp in response:
ans = resp
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield num_tokens_from_string(ans)
class HunyuanChat(Base):
def __init__(self, key, model_name, base_url=None):
super().__init__(key, model_name, base_url=None)
from tencentcloud.common import credential
from tencentcloud.hunyuan.v20230901 import hunyuan_client
key = json.loads(key)
sid = key.get("hunyuan_sid", "")
sk = key.get("hunyuan_sk", "")
cred = credential.Credential(sid, sk)
self.model_name = model_name
self.client = hunyuan_client.HunyuanClient(cred, "")
def chat(self, system, history, gen_conf):
from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
TencentCloudSDKException,
)
from tencentcloud.hunyuan.v20230901 import models
_gen_conf = {}
_history = [{k.capitalize(): v for k, v in item.items()} for item in history]
if system:
_history.insert(0, {"Role": "system", "Content": system})
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
if "temperature" in gen_conf:
_gen_conf["Temperature"] = gen_conf["temperature"]
if "top_p" in gen_conf:
_gen_conf["TopP"] = gen_conf["top_p"]
req = models.ChatCompletionsRequest()
params = {"Model": self.model_name, "Messages": _history, **_gen_conf}
req.from_json_string(json.dumps(params))
ans = ""
try:
response = self.client.ChatCompletions(req)
ans = response.Choices[0].Message.Content
return ans, response.Usage.TotalTokens
except TencentCloudSDKException as e:
return ans + "\n**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
TencentCloudSDKException,
)
from tencentcloud.hunyuan.v20230901 import models
_gen_conf = {}
_history = [{k.capitalize(): v for k, v in item.items()} for item in history]
if system:
_history.insert(0, {"Role": "system", "Content": system})
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
if "temperature" in gen_conf:
_gen_conf["Temperature"] = gen_conf["temperature"]
if "top_p" in gen_conf:
_gen_conf["TopP"] = gen_conf["top_p"]
req = models.ChatCompletionsRequest()
params = {
"Model": self.model_name,
"Messages": _history,
"Stream": True,
**_gen_conf,
}
req.from_json_string(json.dumps(params))
ans = ""
total_tokens = 0
try:
response = self.client.ChatCompletions(req)
for resp in response:
resp = json.loads(resp["data"])
if not resp["Choices"] or not resp["Choices"][0]["Delta"]["Content"]:
continue
ans = resp["Choices"][0]["Delta"]["Content"]
total_tokens += 1
yield ans
except TencentCloudSDKException as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class SparkChat(Base):
def __init__(self, key, model_name, base_url="https://spark-api-open.xf-yun.com/v1"):
if not base_url:
base_url = "https://spark-api-open.xf-yun.com/v1"
model2version = {
"Spark-Max": "generalv3.5",
"Spark-Lite": "general",
"Spark-Pro": "generalv3",
"Spark-Pro-128K": "pro-128k",
"Spark-4.0-Ultra": "4.0Ultra",
}
version2model = {v: k for k, v in model2version.items()}
assert model_name in model2version or model_name in version2model, f"The given model name is not supported yet. Support: {list(model2version.keys())}"
if model_name in model2version:
model_version = model2version[model_name]
else:
model_version = model_name
super().__init__(key, model_version, base_url)
class BaiduYiyanChat(Base):
def __init__(self, key, model_name, base_url=None):
super().__init__(key, model_name, base_url=None)
import qianfan
key = json.loads(key)
ak = key.get("yiyan_ak", "")
sk = key.get("yiyan_sk", "")
self.client = qianfan.ChatCompletion(ak=ak, sk=sk)
self.model_name = model_name.lower()
self.system = ""
def chat(self, system, history, gen_conf):
if system:
self.system = system
gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
ans = ""
try:
response = self.client.do(model=self.model_name, messages=history, system=self.system, **gen_conf).body
ans = response["result"]
return ans, self.total_token_count(response)
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
self.system = system
gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
ans = ""
total_tokens = 0
try:
response = self.client.do(model=self.model_name, messages=history, system=self.system, stream=True, **gen_conf)
for resp in response:
resp = resp.body
ans = resp["result"]
total_tokens = self.total_token_count(resp)
yield ans
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
yield total_tokens
class AnthropicChat(Base):
def __init__(self, key, model_name, base_url=None):
super().__init__(key, model_name, base_url=None)
import anthropic
self.client = anthropic.Anthropic(api_key=key)
self.model_name = model_name
self.system = ""
def chat(self, system, history, gen_conf):
if system:
self.system = system
if "presence_penalty" in gen_conf:
del gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf:
del gen_conf["frequency_penalty"]
gen_conf["max_tokens"] = 8192
if "haiku" in self.model_name or "opus" in self.model_name:
gen_conf["max_tokens"] = 4096
ans = ""
try:
response = self.client.messages.create(
model=self.model_name,
messages=history,
system=self.system,
stream=False,
**gen_conf,
).to_dict()
ans = response["content"][0]["text"]
if response["stop_reason"] == "max_tokens":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
return (
ans,
response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
)
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
self.system = system
if "presence_penalty" in gen_conf:
del gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf:
del gen_conf["frequency_penalty"]
gen_conf["max_tokens"] = 8192
if "haiku" in self.model_name or "opus" in self.model_name:
gen_conf["max_tokens"] = 4096
ans = ""
total_tokens = 0
reasoning_start = False
try:
response = self.client.messages.create(
model=self.model_name,
messages=history,
system=system,
stream=True,
**gen_conf,
)
for res in response:
if res.type == "content_block_delta":
if res.delta.type == "thinking_delta" and res.delta.thinking:
ans = ""
if not reasoning_start:
reasoning_start = True
ans = "<think>"
ans += res.delta.thinking + "</think>"
else:
reasoning_start = False
text = res.delta.text
ans = text
total_tokens += num_tokens_from_string(text)
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class GoogleChat(Base):
def __init__(self, key, model_name, base_url=None):
super().__init__(key, model_name, base_url=None)
import base64
from google.oauth2 import service_account
key = json.loads(key)
access_token = json.loads(base64.b64decode(key.get("google_service_account_key", "")))
project_id = key.get("google_project_id", "")
region = key.get("google_region", "")
scopes = ["https://www.googleapis.com/auth/cloud-platform"]
self.model_name = model_name
self.system = ""
if "claude" in self.model_name:
from anthropic import AnthropicVertex
from google.auth.transport.requests import Request
if access_token:
credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes)
request = Request()
credits.refresh(request)
token = credits.token
self.client = AnthropicVertex(region=region, project_id=project_id, access_token=token)
else:
self.client = AnthropicVertex(region=region, project_id=project_id)
else:
import vertexai.generative_models as glm
from google.cloud import aiplatform
if access_token:
credits = service_account.Credentials.from_service_account_info(access_token)
aiplatform.init(credentials=credits, project=project_id, location=region)
else:
aiplatform.init(project=project_id, location=region)
self.client = glm.GenerativeModel(model_name=self.model_name)
def chat(self, system, history, gen_conf):
if system:
self.system = system
if "claude" in self.model_name:
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
try:
response = self.client.messages.create(
model=self.model_name,
messages=history,
system=self.system,
stream=False,
**gen_conf,
).json()
ans = response["content"][0]["text"]
if response["stop_reason"] == "max_tokens":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
return (
ans,
response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
)
except Exception as e:
return "\n**ERROR**: " + str(e), 0
else:
self.client._system_instruction = self.system
if "max_tokens" in gen_conf:
gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_output_tokens"]:
del gen_conf[k]
for item in history:
if "role" in item and item["role"] == "assistant":
item["role"] = "model"
if "content" in item:
item["parts"] = item.pop("content")
try:
response = self.client.generate_content(history, generation_config=gen_conf)
ans = response.text
return ans, response.usage_metadata.total_token_count
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
self.system = system
if "claude" in self.model_name:
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
ans = ""
total_tokens = 0
try:
response = self.client.messages.create(
model=self.model_name,
messages=history,
system=self.system,
stream=True,
**gen_conf,
)
for res in response.iter_lines():
res = res.decode("utf-8")
if "content_block_delta" in res and "data" in res:
text = json.loads(res[6:])["delta"]["text"]
ans = text
total_tokens += num_tokens_from_string(text)
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
else:
self.client._system_instruction = self.system
if "max_tokens" in gen_conf:
gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_output_tokens"]:
del gen_conf[k]
for item in history:
if "role" in item and item["role"] == "assistant":
item["role"] = "model"
if "content" in item:
item["parts"] = item.pop("content")
ans = ""
try:
response = self.model.generate_content(history, generation_config=gen_conf, stream=True)
for resp in response:
ans = resp.text
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield response._chunks[-1].usage_metadata.total_token_count
class GPUStackChat(Base):
def __init__(self, key=None, model_name="", base_url=""):
if not base_url:
raise ValueError("Local llm url cannot be None")
base_url = urljoin(base_url, "v1")
super().__init__(key, model_name, base_url)