mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-19 20:50:00 +08:00

### What problem does this PR solve? Add license statement. ### Type of change - [x] Refactoring Signed-off-by: Jin Hai <haijin.chn@gmail.com>
110 lines
3.6 KiB
Python
110 lines
3.6 KiB
Python
#
|
|
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from jina import Deployment
|
|
from docarray import BaseDoc
|
|
from jina import Executor, requests
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
|
import argparse
|
|
import torch
|
|
|
|
|
|
class Prompt(BaseDoc):
|
|
message: list[dict]
|
|
gen_conf: dict
|
|
|
|
|
|
class Generation(BaseDoc):
|
|
text: str
|
|
|
|
|
|
tokenizer = None
|
|
model_name = ""
|
|
|
|
|
|
class TokenStreamingExecutor(Executor):
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.model = AutoModelForCausalLM.from_pretrained(
|
|
model_name, device_map="auto", torch_dtype="auto"
|
|
)
|
|
|
|
@requests(on="/chat")
|
|
async def generate(self, doc: Prompt, **kwargs) -> Generation:
|
|
text = tokenizer.apply_chat_template(
|
|
doc.message,
|
|
tokenize=False,
|
|
)
|
|
inputs = tokenizer([text], return_tensors="pt")
|
|
generation_config = GenerationConfig(
|
|
**doc.gen_conf,
|
|
eos_token_id=tokenizer.eos_token_id,
|
|
pad_token_id=tokenizer.eos_token_id
|
|
)
|
|
generated_ids = self.model.generate(
|
|
inputs.input_ids, generation_config=generation_config
|
|
)
|
|
generated_ids = [
|
|
output_ids[len(input_ids) :]
|
|
for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
|
|
]
|
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
yield Generation(text=response)
|
|
|
|
@requests(on="/stream")
|
|
async def task(self, doc: Prompt, **kwargs) -> Generation:
|
|
text = tokenizer.apply_chat_template(
|
|
doc.message,
|
|
tokenize=False,
|
|
)
|
|
input = tokenizer([text], return_tensors="pt")
|
|
input_len = input["input_ids"].shape[1]
|
|
max_new_tokens = 512
|
|
if "max_new_tokens" in doc.gen_conf:
|
|
max_new_tokens = doc.gen_conf.pop("max_new_tokens")
|
|
generation_config = GenerationConfig(
|
|
**doc.gen_conf,
|
|
eos_token_id=tokenizer.eos_token_id,
|
|
pad_token_id=tokenizer.eos_token_id
|
|
)
|
|
for _ in range(max_new_tokens):
|
|
output = self.model.generate(
|
|
**input, max_new_tokens=1, generation_config=generation_config
|
|
)
|
|
if output[0][-1] == tokenizer.eos_token_id:
|
|
break
|
|
yield Generation(
|
|
text=tokenizer.decode(output[0][input_len:], skip_special_tokens=True)
|
|
)
|
|
input = {
|
|
"input_ids": output,
|
|
"attention_mask": torch.ones(1, len(output[0])),
|
|
}
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--model_name", type=str, help="Model name or path")
|
|
parser.add_argument("--port", default=12345, type=int, help="Jina serving port")
|
|
args = parser.parse_args()
|
|
model_name = args.model_name
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
|
with Deployment(
|
|
uses=TokenStreamingExecutor, port=args.port, protocol="grpc"
|
|
) as dep:
|
|
dep.block()
|