mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-05-25 15:48:07 +08:00
128 lines
4.6 KiB
Python
128 lines
4.6 KiB
Python
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
#
|
||
import copy
|
||
import re
|
||
from rag.app import laws
|
||
from rag.nlp import huqie, is_english, tokenize, naive_merge
|
||
from deepdoc.parser import PdfParser
|
||
from rag.settings import cron_logger
|
||
|
||
|
||
class Pdf(PdfParser):
|
||
def __call__(self, filename, binary=None, from_page=0,
|
||
to_page=100000, zoomin=3, callback=None):
|
||
self.__images__(
|
||
filename if not binary else binary,
|
||
zoomin,
|
||
from_page,
|
||
to_page)
|
||
callback(0.1, "OCR finished")
|
||
|
||
from timeit import default_timer as timer
|
||
start = timer()
|
||
start = timer()
|
||
self._layouts_rec(zoomin)
|
||
callback(0.5, "Layout analysis finished.")
|
||
print("paddle layouts:", timer() - start)
|
||
self._table_transformer_job(zoomin)
|
||
callback(0.7, "Table analysis finished.")
|
||
self._text_merge()
|
||
self._concat_downward(concat_between_pages=False)
|
||
self._filter_forpages()
|
||
callback(0.77, "Text merging finished")
|
||
tbls = self._extract_table_figure(True, zoomin, False)
|
||
|
||
cron_logger.info("paddle layouts:".format((timer() - start) / (self.total_page + 0.1)))
|
||
#self._naive_vertical_merge()
|
||
return [(b["text"], self._line_tag(b, zoomin)) for b in self.boxes], tbls
|
||
|
||
|
||
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
||
"""
|
||
Supported file formats are docx, pdf, txt.
|
||
This method apply the naive ways to chunk files.
|
||
Successive text will be sliced into pieces using 'delimiter'.
|
||
Next, these successive pieces are merge into chunks whose token number is no more than 'Max token number'.
|
||
"""
|
||
|
||
eng = lang.lower() == "english"#is_english(cks)
|
||
doc = {
|
||
"docnm_kwd": filename,
|
||
"title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
||
}
|
||
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
||
res = []
|
||
pdf_parser = None
|
||
sections = []
|
||
if re.search(r"\.docx?$", filename, re.IGNORECASE):
|
||
callback(0.1, "Start to parse.")
|
||
for txt in laws.Docx()(filename, binary):
|
||
sections.append((txt, ""))
|
||
callback(0.8, "Finish parsing.")
|
||
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||
pdf_parser = Pdf()
|
||
sections, tbls = pdf_parser(filename if not binary else binary,
|
||
from_page=from_page, to_page=to_page, callback=callback)
|
||
# add tables
|
||
for img, rows in tbls:
|
||
bs = 10
|
||
de = ";" if eng else ";"
|
||
for i in range(0, len(rows), bs):
|
||
d = copy.deepcopy(doc)
|
||
r = de.join(rows[i:i + bs])
|
||
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
|
||
tokenize(d, r, eng)
|
||
d["image"] = img
|
||
res.append(d)
|
||
elif re.search(r"\.txt$", filename, re.IGNORECASE):
|
||
callback(0.1, "Start to parse.")
|
||
txt = ""
|
||
if binary:
|
||
txt = binary.decode("utf-8")
|
||
else:
|
||
with open(filename, "r") as f:
|
||
while True:
|
||
l = f.readline()
|
||
if not l: break
|
||
txt += l
|
||
sections = txt.split("\n")
|
||
sections = [(l, "") for l in sections if l]
|
||
callback(0.8, "Finish parsing.")
|
||
else:
|
||
raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
|
||
|
||
parser_config = kwargs.get("parser_config", {"chunk_token_num": 128, "delimiter": "\n!?。;!?"})
|
||
cks = naive_merge(sections, parser_config["chunk_token_num"], parser_config["delimiter"])
|
||
|
||
# wrap up to es documents
|
||
for ck in cks:
|
||
print("--", ck)
|
||
d = copy.deepcopy(doc)
|
||
if pdf_parser:
|
||
d["image"] = pdf_parser.crop(ck)
|
||
ck = pdf_parser.remove_tag(ck)
|
||
tokenize(d, ck, eng)
|
||
res.append(d)
|
||
return res
|
||
|
||
|
||
if __name__ == "__main__":
|
||
import sys
|
||
|
||
|
||
def dummy(a, b):
|
||
pass
|
||
|
||
|
||
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)
|