mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 22:20:07 +08:00

### What problem does this PR solve? Format the code ### Type of change - [x] Refactoring Signed-off-by: Jin Hai <haijin.chn@gmail.com>
81 lines
3.1 KiB
Python
81 lines
3.1 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
from abc import ABC
|
|
import pandas as pd
|
|
import pywencai
|
|
from agent.component.base import ComponentBase, ComponentParamBase
|
|
|
|
|
|
class WenCaiParam(ComponentParamBase):
|
|
"""
|
|
Define the WenCai component parameters.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.top_n = 10
|
|
self.query_type = "stock"
|
|
|
|
def check(self):
|
|
self.check_positive_integer(self.top_n, "Top N")
|
|
self.check_valid_value(self.query_type, "Query type",
|
|
['stock', 'zhishu', 'fund', 'hkstock', 'usstock', 'threeboard', 'conbond', 'insurance',
|
|
'futures', 'lccp',
|
|
'foreign_exchange'])
|
|
|
|
|
|
class WenCai(ComponentBase, ABC):
|
|
component_name = "WenCai"
|
|
|
|
def _run(self, history, **kwargs):
|
|
ans = self.get_input()
|
|
ans = ",".join(ans["content"]) if "content" in ans else ""
|
|
if not ans:
|
|
return WenCai.be_output("")
|
|
|
|
try:
|
|
wencai_res = []
|
|
res = pywencai.get(query=ans, query_type=self._param.query_type, perpage=self._param.top_n)
|
|
if isinstance(res, pd.DataFrame):
|
|
wencai_res.append({"content": res.to_markdown()})
|
|
if isinstance(res, dict):
|
|
for item in res.items():
|
|
if isinstance(item[1], list):
|
|
wencai_res.append({"content": item[0] + "\n" + pd.DataFrame(item[1]).to_markdown()})
|
|
continue
|
|
if isinstance(item[1], str):
|
|
wencai_res.append({"content": item[0] + "\n" + item[1]})
|
|
continue
|
|
if isinstance(item[1], dict):
|
|
if "meta" in item[1].keys():
|
|
continue
|
|
wencai_res.append({"content": pd.DataFrame.from_dict(item[1], orient='index').to_markdown()})
|
|
continue
|
|
if isinstance(item[1], pd.DataFrame):
|
|
if "image_url" in item[1].columns:
|
|
continue
|
|
wencai_res.append({"content": item[1].to_markdown()})
|
|
continue
|
|
|
|
wencai_res.append({"content": item[0] + "\n" + str(item[1])})
|
|
except Exception as e:
|
|
return WenCai.be_output("**ERROR**: " + str(e))
|
|
|
|
if not wencai_res:
|
|
return WenCai.be_output("")
|
|
|
|
return pd.DataFrame(wencai_res)
|