ragflow/api/db/services/document_service.py
Zhichang Yu 65a8cd1772
Fix knowledge_graph_kwd on infinity. Close #6476 and #6624 (#6651)
### What problem does this PR solve?

Fix knowledge_graph_kwd on infinity. Close #6476 and #6624

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-28 22:05:40 +08:00

629 lines
23 KiB
Python

#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import logging
import random
import re
from concurrent.futures import ThreadPoolExecutor
from copy import deepcopy
from datetime import datetime
from io import BytesIO
import trio
import xxhash
from peewee import fn
from api import settings
from api.db import FileType, LLMType, ParserType, StatusEnum, TaskStatus, UserTenantRole
from api.db.db_models import DB, Document, Knowledgebase, Task, Tenant, UserTenant
from api.db.db_utils import bulk_insert_into_db
from api.db.services.common_service import CommonService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils import current_timestamp, get_format_time, get_uuid
from rag.nlp import rag_tokenizer, search
from rag.settings import get_svr_queue_name
from rag.utils.redis_conn import REDIS_CONN
from rag.utils.storage_factory import STORAGE_IMPL
class DocumentService(CommonService):
model = Document
@classmethod
@DB.connection_context()
def get_list(cls, kb_id, page_number, items_per_page,
orderby, desc, keywords, id, name):
docs = cls.model.select().where(cls.model.kb_id == kb_id)
if id:
docs = docs.where(
cls.model.id == id)
if name:
docs = docs.where(
cls.model.name == name
)
if keywords:
docs = docs.where(
fn.LOWER(cls.model.name).contains(keywords.lower())
)
if desc:
docs = docs.order_by(cls.model.getter_by(orderby).desc())
else:
docs = docs.order_by(cls.model.getter_by(orderby).asc())
count = docs.count()
docs = docs.paginate(page_number, items_per_page)
return list(docs.dicts()), count
@classmethod
@DB.connection_context()
def get_by_kb_id(cls, kb_id, page_number, items_per_page,
orderby, desc, keywords):
if keywords:
docs = cls.model.select().where(
(cls.model.kb_id == kb_id),
(fn.LOWER(cls.model.name).contains(keywords.lower()))
)
else:
docs = cls.model.select().where(cls.model.kb_id == kb_id)
count = docs.count()
if desc:
docs = docs.order_by(cls.model.getter_by(orderby).desc())
else:
docs = docs.order_by(cls.model.getter_by(orderby).asc())
docs = docs.paginate(page_number, items_per_page)
return list(docs.dicts()), count
@classmethod
@DB.connection_context()
def insert(cls, doc):
if not cls.save(**doc):
raise RuntimeError("Database error (Document)!")
if not KnowledgebaseService.atomic_increase_doc_num_by_id(doc["kb_id"]):
raise RuntimeError("Database error (Knowledgebase)!")
return Document(**doc)
@classmethod
@DB.connection_context()
def remove_document(cls, doc, tenant_id):
cls.clear_chunk_num(doc.id)
try:
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id)
settings.docStoreConn.update({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["entity", "relation", "graph", "subgraph", "community_report"], "source_id": doc.id},
{"remove": {"source_id": doc.id}},
search.index_name(tenant_id), doc.kb_id)
settings.docStoreConn.update({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["graph"]},
{"removed_kwd": "Y"},
search.index_name(tenant_id), doc.kb_id)
settings.docStoreConn.delete({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["entity", "relation", "graph", "subgraph", "community_report"], "must_not": {"exists": "source_id"}},
search.index_name(tenant_id), doc.kb_id)
except Exception:
pass
return cls.delete_by_id(doc.id)
@classmethod
@DB.connection_context()
def get_newly_uploaded(cls):
fields = [
cls.model.id,
cls.model.kb_id,
cls.model.parser_id,
cls.model.parser_config,
cls.model.name,
cls.model.type,
cls.model.location,
cls.model.size,
Knowledgebase.tenant_id,
Tenant.embd_id,
Tenant.img2txt_id,
Tenant.asr_id,
cls.model.update_time]
docs = cls.model.select(*fields) \
.join(Knowledgebase, on=(cls.model.kb_id == Knowledgebase.id)) \
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id)) \
.where(
cls.model.status == StatusEnum.VALID.value,
~(cls.model.type == FileType.VIRTUAL.value),
cls.model.progress == 0,
cls.model.update_time >= current_timestamp() - 1000 * 600,
cls.model.run == TaskStatus.RUNNING.value) \
.order_by(cls.model.update_time.asc())
return list(docs.dicts())
@classmethod
@DB.connection_context()
def get_unfinished_docs(cls):
fields = [cls.model.id, cls.model.process_begin_at, cls.model.parser_config, cls.model.progress_msg,
cls.model.run, cls.model.parser_id]
docs = cls.model.select(*fields) \
.where(
cls.model.status == StatusEnum.VALID.value,
~(cls.model.type == FileType.VIRTUAL.value),
cls.model.progress < 1,
cls.model.progress > 0)
return list(docs.dicts())
@classmethod
@DB.connection_context()
def increment_chunk_num(cls, doc_id, kb_id, token_num, chunk_num, duation):
num = cls.model.update(token_num=cls.model.token_num + token_num,
chunk_num=cls.model.chunk_num + chunk_num,
process_duation=cls.model.process_duation + duation).where(
cls.model.id == doc_id).execute()
if num == 0:
raise LookupError(
"Document not found which is supposed to be there")
num = Knowledgebase.update(
token_num=Knowledgebase.token_num +
token_num,
chunk_num=Knowledgebase.chunk_num +
chunk_num).where(
Knowledgebase.id == kb_id).execute()
return num
@classmethod
@DB.connection_context()
def decrement_chunk_num(cls, doc_id, kb_id, token_num, chunk_num, duation):
num = cls.model.update(token_num=cls.model.token_num - token_num,
chunk_num=cls.model.chunk_num - chunk_num,
process_duation=cls.model.process_duation + duation).where(
cls.model.id == doc_id).execute()
if num == 0:
raise LookupError(
"Document not found which is supposed to be there")
num = Knowledgebase.update(
token_num=Knowledgebase.token_num -
token_num,
chunk_num=Knowledgebase.chunk_num -
chunk_num
).where(
Knowledgebase.id == kb_id).execute()
return num
@classmethod
@DB.connection_context()
def clear_chunk_num(cls, doc_id):
doc = cls.model.get_by_id(doc_id)
assert doc, "Can't fine document in database."
num = Knowledgebase.update(
token_num=Knowledgebase.token_num -
doc.token_num,
chunk_num=Knowledgebase.chunk_num -
doc.chunk_num,
doc_num=Knowledgebase.doc_num - 1
).where(
Knowledgebase.id == doc.kb_id).execute()
return num
@classmethod
@DB.connection_context()
def get_tenant_id(cls, doc_id):
docs = cls.model.select(
Knowledgebase.tenant_id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)).where(
cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value)
docs = docs.dicts()
if not docs:
return
return docs[0]["tenant_id"]
@classmethod
@DB.connection_context()
def get_knowledgebase_id(cls, doc_id):
docs = cls.model.select(cls.model.kb_id).where(cls.model.id == doc_id)
docs = docs.dicts()
if not docs:
return
return docs[0]["kb_id"]
@classmethod
@DB.connection_context()
def get_tenant_id_by_name(cls, name):
docs = cls.model.select(
Knowledgebase.tenant_id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)).where(
cls.model.name == name, Knowledgebase.status == StatusEnum.VALID.value)
docs = docs.dicts()
if not docs:
return
return docs[0]["tenant_id"]
@classmethod
@DB.connection_context()
def accessible(cls, doc_id, user_id):
docs = cls.model.select(
cls.model.id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)
).join(UserTenant, on=(UserTenant.tenant_id == Knowledgebase.tenant_id)
).where(cls.model.id == doc_id, UserTenant.user_id == user_id).paginate(0, 1)
docs = docs.dicts()
if not docs:
return False
return True
@classmethod
@DB.connection_context()
def accessible4deletion(cls, doc_id, user_id):
docs = cls.model.select(cls.model.id
).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)
).join(
UserTenant, on=(
(UserTenant.tenant_id == Knowledgebase.created_by) & (UserTenant.user_id == user_id))
).where(
cls.model.id == doc_id,
UserTenant.status == StatusEnum.VALID.value,
((UserTenant.role == UserTenantRole.NORMAL) | (UserTenant.role == UserTenantRole.OWNER))
).paginate(0, 1)
docs = docs.dicts()
if not docs:
return False
return True
@classmethod
@DB.connection_context()
def get_embd_id(cls, doc_id):
docs = cls.model.select(
Knowledgebase.embd_id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)).where(
cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value)
docs = docs.dicts()
if not docs:
return
return docs[0]["embd_id"]
@classmethod
@DB.connection_context()
def get_chunking_config(cls, doc_id):
configs = (
cls.model.select(
cls.model.id,
cls.model.kb_id,
cls.model.parser_id,
cls.model.parser_config,
Knowledgebase.language,
Knowledgebase.embd_id,
Tenant.id.alias("tenant_id"),
Tenant.img2txt_id,
Tenant.asr_id,
Tenant.llm_id,
)
.join(Knowledgebase, on=(cls.model.kb_id == Knowledgebase.id))
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))
.where(cls.model.id == doc_id)
)
configs = configs.dicts()
if not configs:
return None
return configs[0]
@classmethod
@DB.connection_context()
def get_doc_id_by_doc_name(cls, doc_name):
fields = [cls.model.id]
doc_id = cls.model.select(*fields) \
.where(cls.model.name == doc_name)
doc_id = doc_id.dicts()
if not doc_id:
return
return doc_id[0]["id"]
@classmethod
@DB.connection_context()
def get_thumbnails(cls, docids):
fields = [cls.model.id, cls.model.kb_id, cls.model.thumbnail]
return list(cls.model.select(
*fields).where(cls.model.id.in_(docids)).dicts())
@classmethod
@DB.connection_context()
def update_parser_config(cls, id, config):
if not config:
return
e, d = cls.get_by_id(id)
if not e:
raise LookupError(f"Document({id}) not found.")
def dfs_update(old, new):
for k, v in new.items():
if k not in old:
old[k] = v
continue
if isinstance(v, dict):
assert isinstance(old[k], dict)
dfs_update(old[k], v)
else:
old[k] = v
dfs_update(d.parser_config, config)
if not config.get("raptor") and d.parser_config.get("raptor"):
del d.parser_config["raptor"]
cls.update_by_id(id, {"parser_config": d.parser_config})
@classmethod
@DB.connection_context()
def get_doc_count(cls, tenant_id):
docs = cls.model.select(cls.model.id).join(Knowledgebase,
on=(Knowledgebase.id == cls.model.kb_id)).where(
Knowledgebase.tenant_id == tenant_id)
return len(docs)
@classmethod
@DB.connection_context()
def begin2parse(cls, docid):
cls.update_by_id(
docid, {"progress": random.random() * 1 / 100.,
"progress_msg": "Task is queued...",
"process_begin_at": get_format_time()
})
@classmethod
@DB.connection_context()
def update_meta_fields(cls, doc_id, meta_fields):
return cls.update_by_id(doc_id, {"meta_fields": meta_fields})
@classmethod
@DB.connection_context()
def update_progress(cls):
docs = cls.get_unfinished_docs()
for d in docs:
try:
tsks = Task.query(doc_id=d["id"], order_by=Task.create_time)
if not tsks:
continue
msg = []
prg = 0
finished = True
bad = 0
has_raptor = False
has_graphrag = False
e, doc = DocumentService.get_by_id(d["id"])
status = doc.run # TaskStatus.RUNNING.value
priority = 0
for t in tsks:
if 0 <= t.progress < 1:
finished = False
if t.progress == -1:
bad += 1
prg += t.progress if t.progress >= 0 else 0
msg.append(t.progress_msg)
if t.task_type == "raptor":
has_raptor = True
elif t.task_type == "graphrag":
has_graphrag = True
priority = max(priority, t.priority)
prg /= len(tsks)
if finished and bad:
prg = -1
status = TaskStatus.FAIL.value
elif finished:
if d["parser_config"].get("raptor", {}).get("use_raptor") and not has_raptor:
queue_raptor_o_graphrag_tasks(d, "raptor", priority)
prg = 0.98 * len(tsks) / (len(tsks) + 1)
elif d["parser_config"].get("graphrag", {}).get("use_graphrag") and not has_graphrag:
queue_raptor_o_graphrag_tasks(d, "graphrag", priority)
prg = 0.98 * len(tsks) / (len(tsks) + 1)
else:
status = TaskStatus.DONE.value
msg = "\n".join(sorted(msg))
info = {
"process_duation": datetime.timestamp(
datetime.now()) -
d["process_begin_at"].timestamp(),
"run": status}
if prg != 0:
info["progress"] = prg
if msg:
info["progress_msg"] = msg
cls.update_by_id(d["id"], info)
except Exception as e:
if str(e).find("'0'") < 0:
logging.exception("fetch task exception")
@classmethod
@DB.connection_context()
def get_kb_doc_count(cls, kb_id):
return len(cls.model.select(cls.model.id).where(
cls.model.kb_id == kb_id).dicts())
@classmethod
@DB.connection_context()
def do_cancel(cls, doc_id):
try:
_, doc = DocumentService.get_by_id(doc_id)
return doc.run == TaskStatus.CANCEL.value or doc.progress < 0
except Exception:
pass
return False
def queue_raptor_o_graphrag_tasks(doc, ty, priority):
chunking_config = DocumentService.get_chunking_config(doc["id"])
hasher = xxhash.xxh64()
for field in sorted(chunking_config.keys()):
hasher.update(str(chunking_config[field]).encode("utf-8"))
def new_task():
nonlocal doc
return {
"id": get_uuid(),
"doc_id": doc["id"],
"from_page": 100000000,
"to_page": 100000000,
"task_type": ty,
"progress_msg": datetime.now().strftime("%H:%M:%S") + " created task " + ty
}
task = new_task()
for field in ["doc_id", "from_page", "to_page"]:
hasher.update(str(task.get(field, "")).encode("utf-8"))
hasher.update(ty.encode("utf-8"))
task["digest"] = hasher.hexdigest()
bulk_insert_into_db(Task, [task], True)
assert REDIS_CONN.queue_product(get_svr_queue_name(priority), message=task), "Can't access Redis. Please check the Redis' status."
def doc_upload_and_parse(conversation_id, file_objs, user_id):
from api.db.services.api_service import API4ConversationService
from api.db.services.conversation_service import ConversationService
from api.db.services.dialog_service import DialogService
from api.db.services.file_service import FileService
from api.db.services.llm_service import LLMBundle
from api.db.services.user_service import TenantService
from rag.app import audio, email, naive, picture, presentation
e, conv = ConversationService.get_by_id(conversation_id)
if not e:
e, conv = API4ConversationService.get_by_id(conversation_id)
assert e, "Conversation not found!"
e, dia = DialogService.get_by_id(conv.dialog_id)
if not dia.kb_ids:
raise LookupError("No knowledge base associated with this conversation. "
"Please add a knowledge base before uploading documents")
kb_id = dia.kb_ids[0]
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
raise LookupError("Can't find this knowledgebase!")
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id, lang=kb.language)
err, files = FileService.upload_document(kb, file_objs, user_id)
assert not err, "\n".join(err)
def dummy(prog=None, msg=""):
pass
FACTORY = {
ParserType.PRESENTATION.value: presentation,
ParserType.PICTURE.value: picture,
ParserType.AUDIO.value: audio,
ParserType.EMAIL.value: email
}
parser_config = {"chunk_token_num": 4096, "delimiter": "\n!?;。;!?", "layout_recognize": "Plain Text"}
exe = ThreadPoolExecutor(max_workers=12)
threads = []
doc_nm = {}
for d, blob in files:
doc_nm[d["id"]] = d["name"]
for d, blob in files:
kwargs = {
"callback": dummy,
"parser_config": parser_config,
"from_page": 0,
"to_page": 100000,
"tenant_id": kb.tenant_id,
"lang": kb.language
}
threads.append(exe.submit(FACTORY.get(d["parser_id"], naive).chunk, d["name"], blob, **kwargs))
for (docinfo, _), th in zip(files, threads):
docs = []
doc = {
"doc_id": docinfo["id"],
"kb_id": [kb.id]
}
for ck in th.result():
d = deepcopy(doc)
d.update(ck)
d["id"] = xxhash.xxh64((ck["content_with_weight"] + str(d["doc_id"])).encode("utf-8")).hexdigest()
d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
d["create_timestamp_flt"] = datetime.now().timestamp()
if not d.get("image"):
docs.append(d)
continue
output_buffer = BytesIO()
if isinstance(d["image"], bytes):
output_buffer = BytesIO(d["image"])
else:
d["image"].save(output_buffer, format='JPEG')
STORAGE_IMPL.put(kb.id, d["id"], output_buffer.getvalue())
d["img_id"] = "{}-{}".format(kb.id, d["id"])
d.pop("image", None)
docs.append(d)
parser_ids = {d["id"]: d["parser_id"] for d, _ in files}
docids = [d["id"] for d, _ in files]
chunk_counts = {id: 0 for id in docids}
token_counts = {id: 0 for id in docids}
es_bulk_size = 64
def embedding(doc_id, cnts, batch_size=16):
nonlocal embd_mdl, chunk_counts, token_counts
vects = []
for i in range(0, len(cnts), batch_size):
vts, c = embd_mdl.encode(cnts[i: i + batch_size])
vects.extend(vts.tolist())
chunk_counts[doc_id] += len(cnts[i:i + batch_size])
token_counts[doc_id] += c
return vects
idxnm = search.index_name(kb.tenant_id)
try_create_idx = True
_, tenant = TenantService.get_by_id(kb.tenant_id)
llm_bdl = LLMBundle(kb.tenant_id, LLMType.CHAT, tenant.llm_id)
for doc_id in docids:
cks = [c for c in docs if c["doc_id"] == doc_id]
if parser_ids[doc_id] != ParserType.PICTURE.value:
from graphrag.general.mind_map_extractor import MindMapExtractor
mindmap = MindMapExtractor(llm_bdl)
try:
mind_map = trio.run(mindmap, [c["content_with_weight"] for c in docs if c["doc_id"] == doc_id])
mind_map = json.dumps(mind_map.output, ensure_ascii=False, indent=2)
if len(mind_map) < 32:
raise Exception("Few content: " + mind_map)
cks.append({
"id": get_uuid(),
"doc_id": doc_id,
"kb_id": [kb.id],
"docnm_kwd": doc_nm[doc_id],
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc_nm[doc_id])),
"content_ltks": rag_tokenizer.tokenize("summary summarize 总结 概况 file 文件 概括"),
"content_with_weight": mind_map,
"knowledge_graph_kwd": "mind_map"
})
except Exception as e:
logging.exception("Mind map generation error")
vects = embedding(doc_id, [c["content_with_weight"] for c in cks])
assert len(cks) == len(vects)
for i, d in enumerate(cks):
v = vects[i]
d["q_%d_vec" % len(v)] = v
for b in range(0, len(cks), es_bulk_size):
if try_create_idx:
if not settings.docStoreConn.indexExist(idxnm, kb_id):
settings.docStoreConn.createIdx(idxnm, kb_id, len(vects[0]))
try_create_idx = False
settings.docStoreConn.insert(cks[b:b + es_bulk_size], idxnm, kb_id)
DocumentService.increment_chunk_num(
doc_id, kb.id, token_counts[doc_id], chunk_counts[doc_id], 0)
return [d["id"] for d, _ in files]