mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-19 04:30:01 +08:00

### What problem does this PR solve? Close #6784 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
489 lines
20 KiB
Python
489 lines
20 KiB
Python
#
|
|
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import logging
|
|
import re
|
|
from functools import reduce
|
|
from io import BytesIO
|
|
from timeit import default_timer as timer
|
|
|
|
from docx import Document
|
|
from docx.image.exceptions import InvalidImageStreamError, UnexpectedEndOfFileError, UnrecognizedImageError
|
|
from markdown import markdown
|
|
from PIL import Image
|
|
from tika import parser
|
|
|
|
from api.db import LLMType
|
|
from api.db.services.llm_service import LLMBundle
|
|
from deepdoc.parser import DocxParser, ExcelParser, HtmlParser, JsonParser, MarkdownParser, PdfParser, TxtParser
|
|
from deepdoc.parser.figure_parser import VisionFigureParser, vision_figure_parser_figure_data_wraper
|
|
from deepdoc.parser.pdf_parser import PlainParser, VisionParser
|
|
from rag.nlp import concat_img, find_codec, naive_merge, naive_merge_docx, rag_tokenizer, tokenize_chunks, tokenize_chunks_docx, tokenize_table
|
|
from rag.utils import num_tokens_from_string
|
|
|
|
|
|
class Docx(DocxParser):
|
|
def __init__(self):
|
|
pass
|
|
|
|
def get_picture(self, document, paragraph):
|
|
img = paragraph._element.xpath('.//pic:pic')
|
|
if not img:
|
|
return None
|
|
img = img[0]
|
|
embed = img.xpath('.//a:blip/@r:embed')
|
|
if not embed:
|
|
return None
|
|
embed = embed[0]
|
|
related_part = document.part.related_parts[embed]
|
|
try:
|
|
image_blob = related_part.image.blob
|
|
except UnrecognizedImageError:
|
|
logging.info("Unrecognized image format. Skipping image.")
|
|
return None
|
|
except UnexpectedEndOfFileError:
|
|
logging.info("EOF was unexpectedly encountered while reading an image stream. Skipping image.")
|
|
return None
|
|
except InvalidImageStreamError:
|
|
logging.info("The recognized image stream appears to be corrupted. Skipping image.")
|
|
return None
|
|
try:
|
|
image = Image.open(BytesIO(image_blob)).convert('RGB')
|
|
return image
|
|
except Exception:
|
|
return None
|
|
|
|
def __clean(self, line):
|
|
line = re.sub(r"\u3000", " ", line).strip()
|
|
return line
|
|
|
|
def __get_nearest_title(self, table_index, filename):
|
|
"""Get the hierarchical title structure before the table"""
|
|
import re
|
|
from docx.text.paragraph import Paragraph
|
|
|
|
titles = []
|
|
blocks = []
|
|
|
|
# Get document name from filename parameter
|
|
doc_name = re.sub(r"\.[a-zA-Z]+$", "", filename)
|
|
if not doc_name:
|
|
doc_name = "Untitled Document"
|
|
|
|
# Collect all document blocks while maintaining document order
|
|
try:
|
|
# Iterate through all paragraphs and tables in document order
|
|
for i, block in enumerate(self.doc._element.body):
|
|
if block.tag.endswith('p'): # Paragraph
|
|
p = Paragraph(block, self.doc)
|
|
blocks.append(('p', i, p))
|
|
elif block.tag.endswith('tbl'): # Table
|
|
blocks.append(('t', i, None)) # Table object will be retrieved later
|
|
except Exception as e:
|
|
logging.error(f"Error collecting blocks: {e}")
|
|
return ""
|
|
|
|
# Find the target table position
|
|
target_table_pos = -1
|
|
table_count = 0
|
|
for i, (block_type, pos, _) in enumerate(blocks):
|
|
if block_type == 't':
|
|
if table_count == table_index:
|
|
target_table_pos = pos
|
|
break
|
|
table_count += 1
|
|
|
|
if target_table_pos == -1:
|
|
return "" # Target table not found
|
|
|
|
# Find the nearest heading paragraph in reverse order
|
|
nearest_title = None
|
|
for i in range(len(blocks)-1, -1, -1):
|
|
block_type, pos, block = blocks[i]
|
|
if pos >= target_table_pos: # Skip blocks after the table
|
|
continue
|
|
|
|
if block_type != 'p':
|
|
continue
|
|
|
|
if block.style and re.search(r"Heading\s*(\d+)", block.style.name, re.I):
|
|
try:
|
|
level_match = re.search(r"(\d+)", block.style.name)
|
|
if level_match:
|
|
level = int(level_match.group(1))
|
|
if level <= 7: # Support up to 7 heading levels
|
|
title_text = block.text.strip()
|
|
if title_text: # Avoid empty titles
|
|
nearest_title = (level, title_text)
|
|
break
|
|
except Exception as e:
|
|
logging.error(f"Error parsing heading level: {e}")
|
|
|
|
if nearest_title:
|
|
# Add current title
|
|
titles.append(nearest_title)
|
|
current_level = nearest_title[0]
|
|
|
|
# Find all parent headings, allowing cross-level search
|
|
while current_level > 1:
|
|
found = False
|
|
for i in range(len(blocks)-1, -1, -1):
|
|
block_type, pos, block = blocks[i]
|
|
if pos >= target_table_pos: # Skip blocks after the table
|
|
continue
|
|
|
|
if block_type != 'p':
|
|
continue
|
|
|
|
if block.style and re.search(r"Heading\s*(\d+)", block.style.name, re.I):
|
|
try:
|
|
level_match = re.search(r"(\d+)", block.style.name)
|
|
if level_match:
|
|
level = int(level_match.group(1))
|
|
# Find any heading with a higher level
|
|
if level < current_level:
|
|
title_text = block.text.strip()
|
|
if title_text: # Avoid empty titles
|
|
titles.append((level, title_text))
|
|
current_level = level
|
|
found = True
|
|
break
|
|
except Exception as e:
|
|
logging.error(f"Error parsing parent heading: {e}")
|
|
|
|
if not found: # Break if no parent heading is found
|
|
break
|
|
|
|
# Sort by level (ascending, from highest to lowest)
|
|
titles.sort(key=lambda x: x[0])
|
|
# Organize titles (from highest to lowest)
|
|
hierarchy = [doc_name] + [t[1] for t in titles]
|
|
return " > ".join(hierarchy)
|
|
|
|
return ""
|
|
|
|
def __call__(self, filename, binary=None, from_page=0, to_page=100000):
|
|
self.doc = Document(
|
|
filename) if not binary else Document(BytesIO(binary))
|
|
pn = 0
|
|
lines = []
|
|
last_image = None
|
|
for p in self.doc.paragraphs:
|
|
if pn > to_page:
|
|
break
|
|
if from_page <= pn < to_page:
|
|
if p.text.strip():
|
|
if p.style and p.style.name == 'Caption':
|
|
former_image = None
|
|
if lines and lines[-1][1] and lines[-1][2] != 'Caption':
|
|
former_image = lines[-1][1].pop()
|
|
elif last_image:
|
|
former_image = last_image
|
|
last_image = None
|
|
lines.append((self.__clean(p.text), [former_image], p.style.name))
|
|
else:
|
|
current_image = self.get_picture(self.doc, p)
|
|
image_list = [current_image]
|
|
if last_image:
|
|
image_list.insert(0, last_image)
|
|
last_image = None
|
|
lines.append((self.__clean(p.text), image_list, p.style.name if p.style else ""))
|
|
else:
|
|
if current_image := self.get_picture(self.doc, p):
|
|
if lines:
|
|
lines[-1][1].append(current_image)
|
|
else:
|
|
last_image = current_image
|
|
for run in p.runs:
|
|
if 'lastRenderedPageBreak' in run._element.xml:
|
|
pn += 1
|
|
continue
|
|
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
|
|
pn += 1
|
|
new_line = [(line[0], reduce(concat_img, line[1]) if line[1] else None) for line in lines]
|
|
|
|
tbls = []
|
|
for i, tb in enumerate(self.doc.tables):
|
|
title = self.__get_nearest_title(i, filename)
|
|
html = "<table>"
|
|
if title:
|
|
html += f"<caption>Table Location: {title}</caption>"
|
|
for r in tb.rows:
|
|
html += "<tr>"
|
|
i = 0
|
|
while i < len(r.cells):
|
|
span = 1
|
|
c = r.cells[i]
|
|
for j in range(i + 1, len(r.cells)):
|
|
if c.text == r.cells[j].text:
|
|
span += 1
|
|
i = j
|
|
else:
|
|
break
|
|
i += 1
|
|
html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
|
|
html += "</tr>"
|
|
html += "</table>"
|
|
tbls.append(((None, html), ""))
|
|
return new_line, tbls
|
|
|
|
|
|
class Pdf(PdfParser):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def __call__(self, filename, binary=None, from_page=0,
|
|
to_page=100000, zoomin=3, callback=None, separate_tables_figures=False):
|
|
start = timer()
|
|
first_start = start
|
|
callback(msg="OCR started")
|
|
self.__images__(
|
|
filename if not binary else binary,
|
|
zoomin,
|
|
from_page,
|
|
to_page,
|
|
callback
|
|
)
|
|
callback(msg="OCR finished ({:.2f}s)".format(timer() - start))
|
|
logging.info("OCR({}~{}): {:.2f}s".format(from_page, to_page, timer() - start))
|
|
|
|
start = timer()
|
|
self._layouts_rec(zoomin)
|
|
callback(0.63, "Layout analysis ({:.2f}s)".format(timer() - start))
|
|
|
|
start = timer()
|
|
self._table_transformer_job(zoomin)
|
|
callback(0.65, "Table analysis ({:.2f}s)".format(timer() - start))
|
|
|
|
start = timer()
|
|
self._text_merge()
|
|
callback(0.67, "Text merged ({:.2f}s)".format(timer() - start))
|
|
|
|
if separate_tables_figures:
|
|
tbls, figures = self._extract_table_figure(True, zoomin, True, True, True)
|
|
self._concat_downward()
|
|
logging.info("layouts cost: {}s".format(timer() - first_start))
|
|
return [(b["text"], self._line_tag(b, zoomin)) for b in self.boxes], tbls, figures
|
|
else:
|
|
tbls = self._extract_table_figure(True, zoomin, True, True)
|
|
# self._naive_vertical_merge()
|
|
self._concat_downward()
|
|
# self._filter_forpages()
|
|
logging.info("layouts cost: {}s".format(timer() - first_start))
|
|
return [(b["text"], self._line_tag(b, zoomin)) for b in self.boxes], tbls
|
|
|
|
|
|
class Markdown(MarkdownParser):
|
|
def __call__(self, filename, binary=None):
|
|
if binary:
|
|
encoding = find_codec(binary)
|
|
txt = binary.decode(encoding, errors="ignore")
|
|
else:
|
|
with open(filename, "r") as f:
|
|
txt = f.read()
|
|
remainder, tables = self.extract_tables_and_remainder(f'{txt}\n')
|
|
sections = []
|
|
tbls = []
|
|
for sec in remainder.split("\n"):
|
|
if num_tokens_from_string(sec) > 3 * self.chunk_token_num:
|
|
sections.append((sec[:int(len(sec) / 2)], ""))
|
|
sections.append((sec[int(len(sec) / 2):], ""))
|
|
else:
|
|
if sec.strip().find("#") == 0:
|
|
sections.append((sec, ""))
|
|
elif sections and sections[-1][0].strip().find("#") == 0:
|
|
sec_, _ = sections.pop(-1)
|
|
sections.append((sec_ + "\n" + sec, ""))
|
|
else:
|
|
sections.append((sec, ""))
|
|
|
|
for table in tables:
|
|
tbls.append(((None, markdown(table, extensions=['markdown.extensions.tables'])), ""))
|
|
return sections, tbls
|
|
|
|
|
|
def chunk(filename, binary=None, from_page=0, to_page=100000,
|
|
lang="Chinese", callback=None, **kwargs):
|
|
"""
|
|
Supported file formats are docx, pdf, excel, txt.
|
|
This method apply the naive ways to chunk files.
|
|
Successive text will be sliced into pieces using 'delimiter'.
|
|
Next, these successive pieces are merge into chunks whose token number is no more than 'Max token number'.
|
|
"""
|
|
|
|
is_english = lang.lower() == "english" # is_english(cks)
|
|
parser_config = kwargs.get(
|
|
"parser_config", {
|
|
"chunk_token_num": 128, "delimiter": "\n!?。;!?", "layout_recognize": "DeepDOC"})
|
|
doc = {
|
|
"docnm_kwd": filename,
|
|
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
|
}
|
|
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
|
|
res = []
|
|
pdf_parser = None
|
|
if re.search(r"\.docx$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
|
|
try:
|
|
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT)
|
|
callback(0.15, "Visual model detected. Attempting to enhance figure extraction...")
|
|
except Exception:
|
|
vision_model = None
|
|
|
|
sections, tables = Docx()(filename, binary)
|
|
|
|
if vision_model:
|
|
figures_data = vision_figure_parser_figure_data_wraper(sections)
|
|
try:
|
|
docx_vision_parser = VisionFigureParser(vision_model=vision_model, figures_data=figures_data, **kwargs)
|
|
boosted_figures = docx_vision_parser(callback=callback)
|
|
tables.extend(boosted_figures)
|
|
except Exception as e:
|
|
callback(0.6, f"Visual model error: {e}. Skipping figure parsing enhancement.")
|
|
|
|
res = tokenize_table(tables, doc, is_english)
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
st = timer()
|
|
|
|
chunks, images = naive_merge_docx(
|
|
sections, int(parser_config.get(
|
|
"chunk_token_num", 128)), parser_config.get(
|
|
"delimiter", "\n!?。;!?"))
|
|
|
|
if kwargs.get("section_only", False):
|
|
return chunks
|
|
|
|
res.extend(tokenize_chunks_docx(chunks, doc, is_english, images))
|
|
logging.info("naive_merge({}): {}".format(filename, timer() - st))
|
|
return res
|
|
|
|
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
|
layout_recognizer = parser_config.get("layout_recognize", "DeepDOC")
|
|
if isinstance(layout_recognizer, bool):
|
|
layout_recognizer = "DeepDOC" if layout_recognizer else "Plain Text"
|
|
callback(0.1, "Start to parse.")
|
|
|
|
if layout_recognizer == "DeepDOC":
|
|
pdf_parser = Pdf()
|
|
|
|
try:
|
|
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT)
|
|
callback(0.15, "Visual model detected. Attempting to enhance figure extraction...")
|
|
except Exception:
|
|
vision_model = None
|
|
|
|
if vision_model:
|
|
sections, tables, figures = pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page, callback=callback, separate_tables_figures=True)
|
|
callback(0.5, "Basic parsing complete. Proceeding with figure enhancement...")
|
|
try:
|
|
pdf_vision_parser = VisionFigureParser(vision_model=vision_model, figures_data=figures, **kwargs)
|
|
boosted_figures = pdf_vision_parser(callback=callback)
|
|
tables.extend(boosted_figures)
|
|
except Exception as e:
|
|
callback(0.6, f"Visual model error: {e}. Skipping figure parsing enhancement.")
|
|
tables.extend(figures)
|
|
else:
|
|
sections, tables = pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page, callback=callback)
|
|
|
|
res = tokenize_table(tables, doc, is_english)
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
else:
|
|
if layout_recognizer == "Plain Text":
|
|
pdf_parser = PlainParser()
|
|
else:
|
|
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT, llm_name=layout_recognizer, lang=lang)
|
|
pdf_parser = VisionParser(vision_model=vision_model, **kwargs)
|
|
|
|
sections, tables = pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page,
|
|
callback=callback)
|
|
res = tokenize_table(tables, doc, is_english)
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
elif re.search(r"\.(csv|xlsx?)$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
excel_parser = ExcelParser()
|
|
if parser_config.get("html4excel"):
|
|
sections = [(_, "") for _ in excel_parser.html(binary, 12) if _]
|
|
else:
|
|
sections = [(_, "") for _ in excel_parser(binary) if _]
|
|
|
|
elif re.search(r"\.(txt|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt|sql)$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
sections = TxtParser()(filename, binary,
|
|
parser_config.get("chunk_token_num", 128),
|
|
parser_config.get("delimiter", "\n!?;。;!?"))
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
elif re.search(r"\.(md|markdown)$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
sections, tables = Markdown(int(parser_config.get("chunk_token_num", 128)))(filename, binary)
|
|
res = tokenize_table(tables, doc, is_english)
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
elif re.search(r"\.(htm|html)$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
sections = HtmlParser()(filename, binary)
|
|
sections = [(_, "") for _ in sections if _]
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
elif re.search(r"\.json$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
chunk_token_num = int(parser_config.get("chunk_token_num", 128))
|
|
sections = JsonParser(chunk_token_num)(binary)
|
|
sections = [(_, "") for _ in sections if _]
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
elif re.search(r"\.doc$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
binary = BytesIO(binary)
|
|
doc_parsed = parser.from_buffer(binary)
|
|
if doc_parsed.get('content', None) is not None:
|
|
sections = doc_parsed['content'].split('\n')
|
|
sections = [(_, "") for _ in sections if _]
|
|
callback(0.8, "Finish parsing.")
|
|
else:
|
|
callback(0.8, f"tika.parser got empty content from {filename}.")
|
|
logging.warning(f"tika.parser got empty content from {filename}.")
|
|
return []
|
|
|
|
else:
|
|
raise NotImplementedError(
|
|
"file type not supported yet(pdf, xlsx, doc, docx, txt supported)")
|
|
|
|
st = timer()
|
|
chunks = naive_merge(
|
|
sections, int(parser_config.get(
|
|
"chunk_token_num", 128)), parser_config.get(
|
|
"delimiter", "\n!?。;!?"))
|
|
if kwargs.get("section_only", False):
|
|
return chunks
|
|
|
|
res.extend(tokenize_chunks(chunks, doc, is_english, pdf_parser))
|
|
logging.info("naive_merge({}): {}".format(filename, timer() - st))
|
|
return res
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import sys
|
|
|
|
def dummy(prog=None, msg=""):
|
|
pass
|
|
|
|
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)
|