ragflow/rag/app/naive.py
Kevin Hu 14a3efd756
Fix: docx image exceptions. (#6839)
### What problem does this PR solve?

Close #6784

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-07 12:33:34 +08:00

489 lines
20 KiB
Python

#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import re
from functools import reduce
from io import BytesIO
from timeit import default_timer as timer
from docx import Document
from docx.image.exceptions import InvalidImageStreamError, UnexpectedEndOfFileError, UnrecognizedImageError
from markdown import markdown
from PIL import Image
from tika import parser
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from deepdoc.parser import DocxParser, ExcelParser, HtmlParser, JsonParser, MarkdownParser, PdfParser, TxtParser
from deepdoc.parser.figure_parser import VisionFigureParser, vision_figure_parser_figure_data_wraper
from deepdoc.parser.pdf_parser import PlainParser, VisionParser
from rag.nlp import concat_img, find_codec, naive_merge, naive_merge_docx, rag_tokenizer, tokenize_chunks, tokenize_chunks_docx, tokenize_table
from rag.utils import num_tokens_from_string
class Docx(DocxParser):
def __init__(self):
pass
def get_picture(self, document, paragraph):
img = paragraph._element.xpath('.//pic:pic')
if not img:
return None
img = img[0]
embed = img.xpath('.//a:blip/@r:embed')
if not embed:
return None
embed = embed[0]
related_part = document.part.related_parts[embed]
try:
image_blob = related_part.image.blob
except UnrecognizedImageError:
logging.info("Unrecognized image format. Skipping image.")
return None
except UnexpectedEndOfFileError:
logging.info("EOF was unexpectedly encountered while reading an image stream. Skipping image.")
return None
except InvalidImageStreamError:
logging.info("The recognized image stream appears to be corrupted. Skipping image.")
return None
try:
image = Image.open(BytesIO(image_blob)).convert('RGB')
return image
except Exception:
return None
def __clean(self, line):
line = re.sub(r"\u3000", " ", line).strip()
return line
def __get_nearest_title(self, table_index, filename):
"""Get the hierarchical title structure before the table"""
import re
from docx.text.paragraph import Paragraph
titles = []
blocks = []
# Get document name from filename parameter
doc_name = re.sub(r"\.[a-zA-Z]+$", "", filename)
if not doc_name:
doc_name = "Untitled Document"
# Collect all document blocks while maintaining document order
try:
# Iterate through all paragraphs and tables in document order
for i, block in enumerate(self.doc._element.body):
if block.tag.endswith('p'): # Paragraph
p = Paragraph(block, self.doc)
blocks.append(('p', i, p))
elif block.tag.endswith('tbl'): # Table
blocks.append(('t', i, None)) # Table object will be retrieved later
except Exception as e:
logging.error(f"Error collecting blocks: {e}")
return ""
# Find the target table position
target_table_pos = -1
table_count = 0
for i, (block_type, pos, _) in enumerate(blocks):
if block_type == 't':
if table_count == table_index:
target_table_pos = pos
break
table_count += 1
if target_table_pos == -1:
return "" # Target table not found
# Find the nearest heading paragraph in reverse order
nearest_title = None
for i in range(len(blocks)-1, -1, -1):
block_type, pos, block = blocks[i]
if pos >= target_table_pos: # Skip blocks after the table
continue
if block_type != 'p':
continue
if block.style and re.search(r"Heading\s*(\d+)", block.style.name, re.I):
try:
level_match = re.search(r"(\d+)", block.style.name)
if level_match:
level = int(level_match.group(1))
if level <= 7: # Support up to 7 heading levels
title_text = block.text.strip()
if title_text: # Avoid empty titles
nearest_title = (level, title_text)
break
except Exception as e:
logging.error(f"Error parsing heading level: {e}")
if nearest_title:
# Add current title
titles.append(nearest_title)
current_level = nearest_title[0]
# Find all parent headings, allowing cross-level search
while current_level > 1:
found = False
for i in range(len(blocks)-1, -1, -1):
block_type, pos, block = blocks[i]
if pos >= target_table_pos: # Skip blocks after the table
continue
if block_type != 'p':
continue
if block.style and re.search(r"Heading\s*(\d+)", block.style.name, re.I):
try:
level_match = re.search(r"(\d+)", block.style.name)
if level_match:
level = int(level_match.group(1))
# Find any heading with a higher level
if level < current_level:
title_text = block.text.strip()
if title_text: # Avoid empty titles
titles.append((level, title_text))
current_level = level
found = True
break
except Exception as e:
logging.error(f"Error parsing parent heading: {e}")
if not found: # Break if no parent heading is found
break
# Sort by level (ascending, from highest to lowest)
titles.sort(key=lambda x: x[0])
# Organize titles (from highest to lowest)
hierarchy = [doc_name] + [t[1] for t in titles]
return " > ".join(hierarchy)
return ""
def __call__(self, filename, binary=None, from_page=0, to_page=100000):
self.doc = Document(
filename) if not binary else Document(BytesIO(binary))
pn = 0
lines = []
last_image = None
for p in self.doc.paragraphs:
if pn > to_page:
break
if from_page <= pn < to_page:
if p.text.strip():
if p.style and p.style.name == 'Caption':
former_image = None
if lines and lines[-1][1] and lines[-1][2] != 'Caption':
former_image = lines[-1][1].pop()
elif last_image:
former_image = last_image
last_image = None
lines.append((self.__clean(p.text), [former_image], p.style.name))
else:
current_image = self.get_picture(self.doc, p)
image_list = [current_image]
if last_image:
image_list.insert(0, last_image)
last_image = None
lines.append((self.__clean(p.text), image_list, p.style.name if p.style else ""))
else:
if current_image := self.get_picture(self.doc, p):
if lines:
lines[-1][1].append(current_image)
else:
last_image = current_image
for run in p.runs:
if 'lastRenderedPageBreak' in run._element.xml:
pn += 1
continue
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
pn += 1
new_line = [(line[0], reduce(concat_img, line[1]) if line[1] else None) for line in lines]
tbls = []
for i, tb in enumerate(self.doc.tables):
title = self.__get_nearest_title(i, filename)
html = "<table>"
if title:
html += f"<caption>Table Location: {title}</caption>"
for r in tb.rows:
html += "<tr>"
i = 0
while i < len(r.cells):
span = 1
c = r.cells[i]
for j in range(i + 1, len(r.cells)):
if c.text == r.cells[j].text:
span += 1
i = j
else:
break
i += 1
html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
html += "</tr>"
html += "</table>"
tbls.append(((None, html), ""))
return new_line, tbls
class Pdf(PdfParser):
def __init__(self):
super().__init__()
def __call__(self, filename, binary=None, from_page=0,
to_page=100000, zoomin=3, callback=None, separate_tables_figures=False):
start = timer()
first_start = start
callback(msg="OCR started")
self.__images__(
filename if not binary else binary,
zoomin,
from_page,
to_page,
callback
)
callback(msg="OCR finished ({:.2f}s)".format(timer() - start))
logging.info("OCR({}~{}): {:.2f}s".format(from_page, to_page, timer() - start))
start = timer()
self._layouts_rec(zoomin)
callback(0.63, "Layout analysis ({:.2f}s)".format(timer() - start))
start = timer()
self._table_transformer_job(zoomin)
callback(0.65, "Table analysis ({:.2f}s)".format(timer() - start))
start = timer()
self._text_merge()
callback(0.67, "Text merged ({:.2f}s)".format(timer() - start))
if separate_tables_figures:
tbls, figures = self._extract_table_figure(True, zoomin, True, True, True)
self._concat_downward()
logging.info("layouts cost: {}s".format(timer() - first_start))
return [(b["text"], self._line_tag(b, zoomin)) for b in self.boxes], tbls, figures
else:
tbls = self._extract_table_figure(True, zoomin, True, True)
# self._naive_vertical_merge()
self._concat_downward()
# self._filter_forpages()
logging.info("layouts cost: {}s".format(timer() - first_start))
return [(b["text"], self._line_tag(b, zoomin)) for b in self.boxes], tbls
class Markdown(MarkdownParser):
def __call__(self, filename, binary=None):
if binary:
encoding = find_codec(binary)
txt = binary.decode(encoding, errors="ignore")
else:
with open(filename, "r") as f:
txt = f.read()
remainder, tables = self.extract_tables_and_remainder(f'{txt}\n')
sections = []
tbls = []
for sec in remainder.split("\n"):
if num_tokens_from_string(sec) > 3 * self.chunk_token_num:
sections.append((sec[:int(len(sec) / 2)], ""))
sections.append((sec[int(len(sec) / 2):], ""))
else:
if sec.strip().find("#") == 0:
sections.append((sec, ""))
elif sections and sections[-1][0].strip().find("#") == 0:
sec_, _ = sections.pop(-1)
sections.append((sec_ + "\n" + sec, ""))
else:
sections.append((sec, ""))
for table in tables:
tbls.append(((None, markdown(table, extensions=['markdown.extensions.tables'])), ""))
return sections, tbls
def chunk(filename, binary=None, from_page=0, to_page=100000,
lang="Chinese", callback=None, **kwargs):
"""
Supported file formats are docx, pdf, excel, txt.
This method apply the naive ways to chunk files.
Successive text will be sliced into pieces using 'delimiter'.
Next, these successive pieces are merge into chunks whose token number is no more than 'Max token number'.
"""
is_english = lang.lower() == "english" # is_english(cks)
parser_config = kwargs.get(
"parser_config", {
"chunk_token_num": 128, "delimiter": "\n!?。;!?", "layout_recognize": "DeepDOC"})
doc = {
"docnm_kwd": filename,
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
}
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
res = []
pdf_parser = None
if re.search(r"\.docx$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
try:
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT)
callback(0.15, "Visual model detected. Attempting to enhance figure extraction...")
except Exception:
vision_model = None
sections, tables = Docx()(filename, binary)
if vision_model:
figures_data = vision_figure_parser_figure_data_wraper(sections)
try:
docx_vision_parser = VisionFigureParser(vision_model=vision_model, figures_data=figures_data, **kwargs)
boosted_figures = docx_vision_parser(callback=callback)
tables.extend(boosted_figures)
except Exception as e:
callback(0.6, f"Visual model error: {e}. Skipping figure parsing enhancement.")
res = tokenize_table(tables, doc, is_english)
callback(0.8, "Finish parsing.")
st = timer()
chunks, images = naive_merge_docx(
sections, int(parser_config.get(
"chunk_token_num", 128)), parser_config.get(
"delimiter", "\n!?。;!?"))
if kwargs.get("section_only", False):
return chunks
res.extend(tokenize_chunks_docx(chunks, doc, is_english, images))
logging.info("naive_merge({}): {}".format(filename, timer() - st))
return res
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
layout_recognizer = parser_config.get("layout_recognize", "DeepDOC")
if isinstance(layout_recognizer, bool):
layout_recognizer = "DeepDOC" if layout_recognizer else "Plain Text"
callback(0.1, "Start to parse.")
if layout_recognizer == "DeepDOC":
pdf_parser = Pdf()
try:
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT)
callback(0.15, "Visual model detected. Attempting to enhance figure extraction...")
except Exception:
vision_model = None
if vision_model:
sections, tables, figures = pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page, callback=callback, separate_tables_figures=True)
callback(0.5, "Basic parsing complete. Proceeding with figure enhancement...")
try:
pdf_vision_parser = VisionFigureParser(vision_model=vision_model, figures_data=figures, **kwargs)
boosted_figures = pdf_vision_parser(callback=callback)
tables.extend(boosted_figures)
except Exception as e:
callback(0.6, f"Visual model error: {e}. Skipping figure parsing enhancement.")
tables.extend(figures)
else:
sections, tables = pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page, callback=callback)
res = tokenize_table(tables, doc, is_english)
callback(0.8, "Finish parsing.")
else:
if layout_recognizer == "Plain Text":
pdf_parser = PlainParser()
else:
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT, llm_name=layout_recognizer, lang=lang)
pdf_parser = VisionParser(vision_model=vision_model, **kwargs)
sections, tables = pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page,
callback=callback)
res = tokenize_table(tables, doc, is_english)
callback(0.8, "Finish parsing.")
elif re.search(r"\.(csv|xlsx?)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
excel_parser = ExcelParser()
if parser_config.get("html4excel"):
sections = [(_, "") for _ in excel_parser.html(binary, 12) if _]
else:
sections = [(_, "") for _ in excel_parser(binary) if _]
elif re.search(r"\.(txt|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt|sql)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
sections = TxtParser()(filename, binary,
parser_config.get("chunk_token_num", 128),
parser_config.get("delimiter", "\n!?;。;!?"))
callback(0.8, "Finish parsing.")
elif re.search(r"\.(md|markdown)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
sections, tables = Markdown(int(parser_config.get("chunk_token_num", 128)))(filename, binary)
res = tokenize_table(tables, doc, is_english)
callback(0.8, "Finish parsing.")
elif re.search(r"\.(htm|html)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
sections = HtmlParser()(filename, binary)
sections = [(_, "") for _ in sections if _]
callback(0.8, "Finish parsing.")
elif re.search(r"\.json$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
chunk_token_num = int(parser_config.get("chunk_token_num", 128))
sections = JsonParser(chunk_token_num)(binary)
sections = [(_, "") for _ in sections if _]
callback(0.8, "Finish parsing.")
elif re.search(r"\.doc$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
binary = BytesIO(binary)
doc_parsed = parser.from_buffer(binary)
if doc_parsed.get('content', None) is not None:
sections = doc_parsed['content'].split('\n')
sections = [(_, "") for _ in sections if _]
callback(0.8, "Finish parsing.")
else:
callback(0.8, f"tika.parser got empty content from {filename}.")
logging.warning(f"tika.parser got empty content from {filename}.")
return []
else:
raise NotImplementedError(
"file type not supported yet(pdf, xlsx, doc, docx, txt supported)")
st = timer()
chunks = naive_merge(
sections, int(parser_config.get(
"chunk_token_num", 128)), parser_config.get(
"delimiter", "\n!?。;!?"))
if kwargs.get("section_only", False):
return chunks
res.extend(tokenize_chunks(chunks, doc, is_english, pdf_parser))
logging.info("naive_merge({}): {}".format(filename, timer() - st))
return res
if __name__ == "__main__":
import sys
def dummy(prog=None, msg=""):
pass
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)