ragflow/graphrag/general/extractor.py
Yue-Lyu123 20b8ccd1e9
Hotfix ece5903 (#6705)
I'm really sorry, I found that in graphrag/general/extractor.py under
def __call__, the line change.removed_nodes.extend(nodes[1:]) causes an
AttributeError: 'set' object has no attribute 'extend'. Could you please
merge the branch e666528 again? I made some modifications.
2025-04-01 12:06:28 +08:00

246 lines
10 KiB
Python

#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import re
from collections import defaultdict, Counter
from copy import deepcopy
from typing import Callable
import trio
import networkx as nx
from graphrag.general.graph_prompt import SUMMARIZE_DESCRIPTIONS_PROMPT
from graphrag.utils import get_llm_cache, set_llm_cache, handle_single_entity_extraction, \
handle_single_relationship_extraction, split_string_by_multi_markers, flat_uniq_list, chat_limiter, get_from_to, GraphChange
from rag.llm.chat_model import Base as CompletionLLM
from rag.prompts import message_fit_in
from rag.utils import truncate
GRAPH_FIELD_SEP = "<SEP>"
DEFAULT_ENTITY_TYPES = ["organization", "person", "geo", "event", "category"]
ENTITY_EXTRACTION_MAX_GLEANINGS = 2
class Extractor:
_llm: CompletionLLM
def __init__(
self,
llm_invoker: CompletionLLM,
language: str | None = "English",
entity_types: list[str] | None = None,
):
self._llm = llm_invoker
self._language = language
self._entity_types = entity_types or DEFAULT_ENTITY_TYPES
def _chat(self, system, history, gen_conf):
hist = deepcopy(history)
conf = deepcopy(gen_conf)
response = get_llm_cache(self._llm.llm_name, system, hist, conf)
if response:
return response
_, system_msg = message_fit_in([{"role": "system", "content": system}], int(self._llm.max_length * 0.92))
response = self._llm.chat(system_msg[0]["content"], hist, conf)
response = re.sub(r"<think>.*</think>", "", response, flags=re.DOTALL)
if response.find("**ERROR**") >= 0:
raise Exception(response)
set_llm_cache(self._llm.llm_name, system, response, history, gen_conf)
return response
def _entities_and_relations(self, chunk_key: str, records: list, tuple_delimiter: str):
maybe_nodes = defaultdict(list)
maybe_edges = defaultdict(list)
ent_types = [t.lower() for t in self._entity_types]
for record in records:
record_attributes = split_string_by_multi_markers(
record, [tuple_delimiter]
)
if_entities = handle_single_entity_extraction(
record_attributes, chunk_key
)
if if_entities is not None and if_entities.get("entity_type", "unknown").lower() in ent_types:
maybe_nodes[if_entities["entity_name"]].append(if_entities)
continue
if_relation = handle_single_relationship_extraction(
record_attributes, chunk_key
)
if if_relation is not None:
maybe_edges[(if_relation["src_id"], if_relation["tgt_id"])].append(
if_relation
)
return dict(maybe_nodes), dict(maybe_edges)
async def __call__(
self, doc_id: str, chunks: list[str],
callback: Callable | None = None
):
self.callback = callback
start_ts = trio.current_time()
out_results = []
async with trio.open_nursery() as nursery:
for i, ck in enumerate(chunks):
ck = truncate(ck, int(self._llm.max_length*0.8))
nursery.start_soon(lambda: self._process_single_content((doc_id, ck), i, len(chunks), out_results))
maybe_nodes = defaultdict(list)
maybe_edges = defaultdict(list)
sum_token_count = 0
for m_nodes, m_edges, token_count in out_results:
for k, v in m_nodes.items():
maybe_nodes[k].extend(v)
for k, v in m_edges.items():
maybe_edges[tuple(sorted(k))].extend(v)
sum_token_count += token_count
now = trio.current_time()
if callback:
callback(msg = f"Entities and relationships extraction done, {len(maybe_nodes)} nodes, {len(maybe_edges)} edges, {sum_token_count} tokens, {now-start_ts:.2f}s.")
start_ts = now
logging.info("Entities merging...")
all_entities_data = []
async with trio.open_nursery() as nursery:
for en_nm, ents in maybe_nodes.items():
nursery.start_soon(lambda: self._merge_nodes(en_nm, ents, all_entities_data))
now = trio.current_time()
if callback:
callback(msg = f"Entities merging done, {now-start_ts:.2f}s.")
start_ts = now
logging.info("Relationships merging...")
all_relationships_data = []
async with trio.open_nursery() as nursery:
for (src, tgt), rels in maybe_edges.items():
nursery.start_soon(lambda: self._merge_edges(src, tgt, rels, all_relationships_data))
now = trio.current_time()
if callback:
callback(msg = f"Relationships merging done, {now-start_ts:.2f}s.")
if not len(all_entities_data) and not len(all_relationships_data):
logging.warning(
"Didn't extract any entities and relationships, maybe your LLM is not working"
)
if not len(all_entities_data):
logging.warning("Didn't extract any entities")
if not len(all_relationships_data):
logging.warning("Didn't extract any relationships")
return all_entities_data, all_relationships_data
async def _merge_nodes(self, entity_name: str, entities: list[dict], all_relationships_data):
if not entities:
return
entity_type = sorted(
Counter(
[dp["entity_type"] for dp in entities]
).items(),
key=lambda x: x[1],
reverse=True,
)[0][0]
description = GRAPH_FIELD_SEP.join(
sorted(set([dp["description"] for dp in entities]))
)
already_source_ids = flat_uniq_list(entities, "source_id")
description = await self._handle_entity_relation_summary(entity_name, description)
node_data = dict(
entity_type=entity_type,
description=description,
source_id=already_source_ids,
)
node_data["entity_name"] = entity_name
all_relationships_data.append(node_data)
async def _merge_edges(
self,
src_id: str,
tgt_id: str,
edges_data: list[dict],
all_relationships_data=None
):
if not edges_data:
return
weight = sum([edge["weight"] for edge in edges_data])
description = GRAPH_FIELD_SEP.join(sorted(set([edge["description"] for edge in edges_data])))
description = await self._handle_entity_relation_summary(f"{src_id} -> {tgt_id}", description)
keywords = flat_uniq_list(edges_data, "keywords")
source_id = flat_uniq_list(edges_data, "source_id")
edge_data = dict(
src_id=src_id,
tgt_id=tgt_id,
description=description,
keywords=keywords,
weight=weight,
source_id=source_id
)
all_relationships_data.append(edge_data)
async def _merge_graph_nodes(self, graph: nx.Graph, nodes: list[str], change: GraphChange):
if len(nodes) <= 1:
return
change.added_updated_nodes.add(nodes[0])
change.removed_nodes.update(nodes[1:])
nodes_set = set(nodes)
node0_attrs = graph.nodes[nodes[0]]
node0_neighbors = set(graph.neighbors(nodes[0]))
for node1 in nodes[1:]:
# Merge two nodes, keep "entity_name", "entity_type", "page_rank" unchanged.
node1_attrs = graph.nodes[node1]
node0_attrs["description"] += f"{GRAPH_FIELD_SEP}{node1_attrs['description']}"
node0_attrs["source_id"] = sorted(set(node0_attrs["source_id"] + node1_attrs["source_id"]))
for neighbor in graph.neighbors(node1):
change.removed_edges.add(get_from_to(node1, neighbor))
if neighbor not in nodes_set:
edge1_attrs = graph.get_edge_data(node1, neighbor)
if neighbor in node0_neighbors:
# Merge two edges
change.added_updated_edges.add(get_from_to(nodes[0], neighbor))
edge0_attrs = graph.get_edge_data(nodes[0], neighbor)
edge0_attrs["weight"] += edge1_attrs["weight"]
edge0_attrs["description"] += f"{GRAPH_FIELD_SEP}{edge1_attrs['description']}"
for attr in ["keywords", "source_id"]:
edge0_attrs[attr] = sorted(set(edge0_attrs[attr] + edge1_attrs[attr]))
edge0_attrs["description"] = await self._handle_entity_relation_summary(f"({nodes[0]}, {neighbor})", edge0_attrs["description"])
graph.add_edge(nodes[0], neighbor, **edge0_attrs)
else:
graph.add_edge(nodes[0], neighbor, **edge1_attrs)
graph.remove_node(node1)
node0_attrs["description"] = await self._handle_entity_relation_summary(nodes[0], node0_attrs["description"])
graph.nodes[nodes[0]].update(node0_attrs)
async def _handle_entity_relation_summary(
self,
entity_or_relation_name: str,
description: str
) -> str:
summary_max_tokens = 512
use_description = truncate(description, summary_max_tokens)
description_list=use_description.split(GRAPH_FIELD_SEP),
if len(description_list) <= 12:
return use_description
prompt_template = SUMMARIZE_DESCRIPTIONS_PROMPT
context_base = dict(
entity_name=entity_or_relation_name,
description_list=description_list,
language=self._language,
)
use_prompt = prompt_template.format(**context_base)
logging.info(f"Trigger summary: {entity_or_relation_name}")
async with chat_limiter:
summary = await trio.to_thread.run_sync(lambda: self._chat(use_prompt, [{"role": "user", "content": "Output: "}], {"temperature": 0.8}))
return summary