mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 06:00:00 +08:00
65 lines
1.8 KiB
Python
65 lines
1.8 KiB
Python
# Copyright (c) 2024 Microsoft Corporation.
|
|
# Licensed under the MIT License
|
|
"""
|
|
Reference:
|
|
- [graphrag](https://github.com/microsoft/graphrag)
|
|
"""
|
|
|
|
from typing import Any
|
|
|
|
import numpy as np
|
|
import networkx as nx
|
|
from graphrag.leiden import stable_largest_connected_component
|
|
|
|
|
|
@dataclass
|
|
class NodeEmbeddings:
|
|
"""Node embeddings class definition."""
|
|
|
|
nodes: list[str]
|
|
embeddings: np.ndarray
|
|
|
|
|
|
def embed_nod2vec(
|
|
graph: nx.Graph | nx.DiGraph,
|
|
dimensions: int = 1536,
|
|
num_walks: int = 10,
|
|
walk_length: int = 40,
|
|
window_size: int = 2,
|
|
iterations: int = 3,
|
|
random_seed: int = 86,
|
|
) -> NodeEmbeddings:
|
|
"""Generate node embeddings using Node2Vec."""
|
|
# generate embedding
|
|
lcc_tensors = gc.embed.node2vec_embed( # type: ignore
|
|
graph=graph,
|
|
dimensions=dimensions,
|
|
window_size=window_size,
|
|
iterations=iterations,
|
|
num_walks=num_walks,
|
|
walk_length=walk_length,
|
|
random_seed=random_seed,
|
|
)
|
|
return NodeEmbeddings(embeddings=lcc_tensors[0], nodes=lcc_tensors[1])
|
|
|
|
|
|
def run(graph: nx.Graph, args: dict[str, Any]) -> NodeEmbeddings:
|
|
"""Run method definition."""
|
|
if args.get("use_lcc", True):
|
|
graph = stable_largest_connected_component(graph)
|
|
|
|
# create graph embedding using node2vec
|
|
embeddings = embed_nod2vec(
|
|
graph=graph,
|
|
dimensions=args.get("dimensions", 1536),
|
|
num_walks=args.get("num_walks", 10),
|
|
walk_length=args.get("walk_length", 40),
|
|
window_size=args.get("window_size", 2),
|
|
iterations=args.get("iterations", 3),
|
|
random_seed=args.get("random_seed", 86),
|
|
)
|
|
|
|
pairs = zip(embeddings.nodes, embeddings.embeddings.tolist(), strict=True)
|
|
sorted_pairs = sorted(pairs, key=lambda x: x[0])
|
|
|
|
return dict(sorted_pairs) |