mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-05-12 23:18:13 +08:00

### What problem does this PR solve? add support for Tencent Cloud ASR ### Type of change - [x] New Feature (non-breaking change which adds functionality) --------- Co-authored-by: Zhedong Cen <cenzhedong2@126.com> Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
161 lines
5.6 KiB
Python
161 lines
5.6 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
from openai.lib.azure import AzureOpenAI
|
|
from zhipuai import ZhipuAI
|
|
import io
|
|
from abc import ABC
|
|
from ollama import Client
|
|
from openai import OpenAI
|
|
import os
|
|
import json
|
|
from rag.utils import num_tokens_from_string
|
|
import base64
|
|
import re
|
|
|
|
class Base(ABC):
|
|
def __init__(self, key, model_name):
|
|
pass
|
|
|
|
def transcription(self, audio, **kwargs):
|
|
transcription = self.client.audio.transcriptions.create(
|
|
model=self.model_name,
|
|
file=audio,
|
|
response_format="text"
|
|
)
|
|
return transcription.text.strip(), num_tokens_from_string(transcription.text.strip())
|
|
|
|
def audio2base64(self,audio):
|
|
if isinstance(audio, bytes):
|
|
return base64.b64encode(audio).decode("utf-8")
|
|
if isinstance(audio, io.BytesIO):
|
|
return base64.b64encode(audio.getvalue()).decode("utf-8")
|
|
raise TypeError("The input audio file should be in binary format.")
|
|
|
|
|
|
class GPTSeq2txt(Base):
|
|
def __init__(self, key, model_name="whisper-1", base_url="https://api.openai.com/v1"):
|
|
if not base_url: base_url = "https://api.openai.com/v1"
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
|
|
class QWenSeq2txt(Base):
|
|
def __init__(self, key, model_name="paraformer-realtime-8k-v1", **kwargs):
|
|
import dashscope
|
|
dashscope.api_key = key
|
|
self.model_name = model_name
|
|
|
|
def transcription(self, audio, format):
|
|
from http import HTTPStatus
|
|
from dashscope.audio.asr import Recognition
|
|
|
|
recognition = Recognition(model=self.model_name,
|
|
format=format,
|
|
sample_rate=16000,
|
|
callback=None)
|
|
result = recognition.call(audio)
|
|
|
|
ans = ""
|
|
if result.status_code == HTTPStatus.OK:
|
|
for sentence in result.get_sentence():
|
|
ans += str(sentence + '\n')
|
|
return ans, num_tokens_from_string(ans)
|
|
|
|
return "**ERROR**: " + result.message, 0
|
|
|
|
|
|
class OllamaSeq2txt(Base):
|
|
def __init__(self, key, model_name, lang="Chinese", **kwargs):
|
|
self.client = Client(host=kwargs["base_url"])
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
|
|
|
|
class AzureSeq2txt(Base):
|
|
def __init__(self, key, model_name, lang="Chinese", **kwargs):
|
|
self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
|
|
|
|
class XinferenceSeq2txt(Base):
|
|
def __init__(self, key, model_name="", base_url=""):
|
|
self.client = OpenAI(api_key="xxx", base_url=base_url)
|
|
self.model_name = model_name
|
|
|
|
|
|
class TencentCloudSeq2txt(Base):
|
|
def __init__(
|
|
self, key, model_name="16k_zh", base_url="https://asr.tencentcloudapi.com"
|
|
):
|
|
from tencentcloud.common import credential
|
|
from tencentcloud.asr.v20190614 import asr_client
|
|
|
|
key = json.loads(key)
|
|
sid = key.get("tencent_cloud_sid", "")
|
|
sk = key.get("tencent_cloud_sk", "")
|
|
cred = credential.Credential(sid, sk)
|
|
self.client = asr_client.AsrClient(cred, "")
|
|
self.model_name = model_name
|
|
|
|
def transcription(self, audio, max_retries=60, retry_interval=5):
|
|
from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
|
|
TencentCloudSDKException,
|
|
)
|
|
from tencentcloud.asr.v20190614 import models
|
|
import time
|
|
|
|
b64 = self.audio2base64(audio)
|
|
try:
|
|
# dispatch disk
|
|
req = models.CreateRecTaskRequest()
|
|
params = {
|
|
"EngineModelType": self.model_name,
|
|
"ChannelNum": 1,
|
|
"ResTextFormat": 0,
|
|
"SourceType": 1,
|
|
"Data": b64,
|
|
}
|
|
req.from_json_string(json.dumps(params))
|
|
resp = self.client.CreateRecTask(req)
|
|
|
|
# loop query
|
|
req = models.DescribeTaskStatusRequest()
|
|
params = {"TaskId": resp.Data.TaskId}
|
|
req.from_json_string(json.dumps(params))
|
|
retries = 0
|
|
while retries < max_retries:
|
|
resp = self.client.DescribeTaskStatus(req)
|
|
if resp.Data.StatusStr == "success":
|
|
text = re.sub(
|
|
r"\[\d+:\d+\.\d+,\d+:\d+\.\d+\]\s*", "", resp.Data.Result
|
|
).strip()
|
|
return text, num_tokens_from_string(text)
|
|
elif resp.Data.StatusStr == "failed":
|
|
return (
|
|
"**ERROR**: Failed to retrieve speech recognition results.",
|
|
0,
|
|
)
|
|
else:
|
|
time.sleep(retry_interval)
|
|
retries += 1
|
|
return "**ERROR**: Max retries exceeded. Task may still be processing.", 0
|
|
|
|
except TencentCloudSDKException as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|