mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-06-04 11:24:00 +08:00

### What problem does this PR solve? When parsing documents containing images, the current code uses a single-threaded approach to call the VL model, resulting in extremely slow parsing speed (e.g., parsing a Word document with dozens of images takes over 20 minutes). By switching to a multithreaded approach to call the VL model, the parsing speed can be improved to an acceptable level. ### Type of change - [x] Performance Improvement --------- Co-authored-by: liuzhenghua-jk <liuzhenghua-jk@360shuke.com>
98 lines
3.7 KiB
Python
98 lines
3.7 KiB
Python
#
|
|
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
|
from PIL import Image
|
|
|
|
from rag.app.picture import vision_llm_chunk as picture_vision_llm_chunk
|
|
from rag.prompts import vision_llm_figure_describe_prompt
|
|
|
|
|
|
def vision_figure_parser_figure_data_wraper(figures_data_without_positions):
|
|
return [(
|
|
(figure_data[1], [figure_data[0]]),
|
|
[(0, 0, 0, 0, 0)]
|
|
) for figure_data in figures_data_without_positions if isinstance(figure_data[1], Image.Image)]
|
|
|
|
|
|
shared_executor = ThreadPoolExecutor(max_workers=10)
|
|
class VisionFigureParser:
|
|
def __init__(self, vision_model, figures_data, *args, **kwargs):
|
|
self.vision_model = vision_model
|
|
self._extract_figures_info(figures_data)
|
|
assert len(self.figures) == len(self.descriptions)
|
|
assert not self.positions or (len(self.figures) == len(self.positions))
|
|
|
|
def _extract_figures_info(self, figures_data):
|
|
self.figures = []
|
|
self.descriptions = []
|
|
self.positions = []
|
|
|
|
for item in figures_data:
|
|
# position
|
|
if len(item) == 2 and isinstance(item[1], list) and len(item[1]) == 1 and isinstance(item[1][0], tuple) and len(item[1][0]) == 5:
|
|
img_desc = item[0]
|
|
assert len(img_desc) == 2 and isinstance(img_desc[0], Image.Image) and isinstance(img_desc[1], list), "Should be (figure, [description])"
|
|
self.figures.append(img_desc[0])
|
|
self.descriptions.append(img_desc[1])
|
|
self.positions.append(item[1])
|
|
else:
|
|
assert len(item) == 2 and isinstance(item, tuple) and isinstance(item[1], list), f"get {len(item)=}, {item=}"
|
|
self.figures.append(item[0])
|
|
self.descriptions.append(item[1])
|
|
|
|
def _assemble(self):
|
|
self.assembled = []
|
|
self.has_positions = len(self.positions) != 0
|
|
for i in range(len(self.figures)):
|
|
figure = self.figures[i]
|
|
desc = self.descriptions[i]
|
|
pos = self.positions[i] if self.has_positions else None
|
|
|
|
figure_desc = (figure, desc)
|
|
|
|
if pos is not None:
|
|
self.assembled.append((figure_desc, pos))
|
|
else:
|
|
self.assembled.append((figure_desc,))
|
|
|
|
return self.assembled
|
|
|
|
def __call__(self, **kwargs):
|
|
callback = kwargs.get("callback", lambda prog, msg: None)
|
|
|
|
def process(figure_idx, figure_binary):
|
|
description_text = picture_vision_llm_chunk(
|
|
binary=figure_binary,
|
|
vision_model=self.vision_model,
|
|
prompt=vision_llm_figure_describe_prompt(),
|
|
callback=callback,
|
|
)
|
|
return figure_idx, description_text
|
|
|
|
futures = []
|
|
for idx, img_binary in enumerate(self.figures or []):
|
|
futures.append(shared_executor.submit(process, idx, img_binary))
|
|
|
|
for future in as_completed(futures):
|
|
figure_num, txt = future.result()
|
|
if txt:
|
|
self.descriptions[figure_num] = txt + "\n".join(self.descriptions[figure_num])
|
|
|
|
self._assemble()
|
|
|
|
return self.assembled
|