mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-20 13:10:05 +08:00
250 lines
7.8 KiB
Python
250 lines
7.8 KiB
Python
import json, os, sys, hashlib, copy, time, random, re, logging, torch
|
|
from os.path import dirname, realpath
|
|
sys.path.append(dirname(realpath(__file__)) + "/../")
|
|
from util.es_conn import HuEs
|
|
from util.db_conn import Postgres
|
|
from util.minio_conn import HuMinio
|
|
from util import rmSpace, findMaxDt
|
|
from FlagEmbedding import FlagModel
|
|
from nlp import huchunk, huqie
|
|
import base64, hashlib
|
|
from io import BytesIO
|
|
import pandas as pd
|
|
from elasticsearch_dsl import Q
|
|
from parser import (
|
|
PdfParser,
|
|
DocxParser,
|
|
ExcelParser
|
|
)
|
|
from nlp.huchunk import (
|
|
PdfChunker,
|
|
DocxChunker,
|
|
ExcelChunker,
|
|
PptChunker,
|
|
TextChunker
|
|
)
|
|
|
|
ES = HuEs("infiniflow")
|
|
BATCH_SIZE = 64
|
|
PG = Postgres("infiniflow", "docgpt")
|
|
MINIO = HuMinio("infiniflow")
|
|
|
|
PDF = PdfChunker(PdfParser())
|
|
DOC = DocxChunker(DocxParser())
|
|
EXC = ExcelChunker(ExcelParser())
|
|
PPT = PptChunker()
|
|
|
|
def chuck_doc(name, binary):
|
|
suff = os.path.split(name)[-1].lower().split(".")[-1]
|
|
if suff.find("pdf") >= 0: return PDF(binary)
|
|
if suff.find("doc") >= 0: return DOC(binary)
|
|
if re.match(r"(xlsx|xlsm|xltx|xltm)", suff): return EXC(binary)
|
|
if suff.find("ppt") >= 0: return PPT(binary)
|
|
|
|
return TextChunker()(binary)
|
|
|
|
|
|
def collect(comm, mod, tm):
|
|
sql = f"""
|
|
select
|
|
id as kb2doc_id,
|
|
kb_id,
|
|
did,
|
|
updated_at,
|
|
is_deleted
|
|
from kb2_doc
|
|
where
|
|
updated_at >= '{tm}'
|
|
and kb_progress = 0
|
|
and MOD(did, {comm}) = {mod}
|
|
order by updated_at asc
|
|
limit 1000
|
|
"""
|
|
kb2doc = PG.select(sql)
|
|
if len(kb2doc) == 0:return pd.DataFrame()
|
|
|
|
sql = """
|
|
select
|
|
did,
|
|
uid,
|
|
doc_name,
|
|
location,
|
|
size
|
|
from doc_info
|
|
where
|
|
did in (%s)
|
|
"""%",".join([str(i) for i in kb2doc["did"].unique()])
|
|
docs = PG.select(sql)
|
|
docs = docs.fillna("")
|
|
docs = docs.join(kb2doc.set_index("did"), on="did", how="left")
|
|
|
|
mtm = str(docs["updated_at"].max())[:19]
|
|
print("TOTAL:", len(docs), "To: ", mtm)
|
|
return docs
|
|
|
|
|
|
def set_progress(kb2doc_id, prog, msg="Processing..."):
|
|
sql = f"""
|
|
update kb2_doc set kb_progress={prog}, kb_progress_msg='{msg}'
|
|
where
|
|
id={kb2doc_id}
|
|
"""
|
|
PG.update(sql)
|
|
|
|
|
|
def build(row):
|
|
if row["size"] > 256000000:
|
|
set_progress(row["kb2doc_id"], -1, "File size exceeds( <= 256Mb )")
|
|
return []
|
|
res = ES.search(Q("term", doc_id=row["did"]))
|
|
if ES.getTotal(res) > 0:
|
|
ES.updateScriptByQuery(Q("term", doc_id=row["did"]),
|
|
scripts="""
|
|
if(!ctx._source.kb_id.contains('%s'))
|
|
ctx._source.kb_id.add('%s');
|
|
"""%(str(row["kb_id"]), str(row["kb_id"])),
|
|
idxnm = index_name(row["uid"])
|
|
)
|
|
set_progress(row["kb2doc_id"], 1, "Done")
|
|
return []
|
|
|
|
random.seed(time.time())
|
|
set_progress(row["kb2doc_id"], random.randint(0, 20)/100., "Finished preparing! Start to slice file!")
|
|
try:
|
|
obj = chuck_doc(row["doc_name"], MINIO.get("%s-upload"%str(row["uid"]), row["location"]))
|
|
except Exception as e:
|
|
if re.search("(No such file|not found)", str(e)):
|
|
set_progress(row["kb2doc_id"], -1, "Can not find file <%s>"%row["doc_name"])
|
|
else:
|
|
set_progress(row["kb2doc_id"], -1, f"Internal system error: %s"%str(e).replace("'", ""))
|
|
return []
|
|
|
|
print(row["doc_name"], obj)
|
|
if not obj.text_chunks and not obj.table_chunks:
|
|
set_progress(row["kb2doc_id"], 1, "Nothing added! Mostly, file type unsupported yet.")
|
|
return []
|
|
|
|
set_progress(row["kb2doc_id"], random.randint(20, 60)/100., "Finished slicing files. Start to embedding the content.")
|
|
|
|
doc = {
|
|
"doc_id": row["did"],
|
|
"kb_id": [str(row["kb_id"])],
|
|
"docnm_kwd": os.path.split(row["location"])[-1],
|
|
"title_tks": huqie.qie(os.path.split(row["location"])[-1]),
|
|
"updated_at": str(row["updated_at"]).replace("T", " ")[:19]
|
|
}
|
|
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
|
output_buffer = BytesIO()
|
|
docs = []
|
|
md5 = hashlib.md5()
|
|
for txt, img in obj.text_chunks:
|
|
d = copy.deepcopy(doc)
|
|
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
|
|
d["_id"] = md5.hexdigest()
|
|
d["content_ltks"] = huqie.qie(txt)
|
|
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
|
|
if not img:
|
|
docs.append(d)
|
|
continue
|
|
img.save(output_buffer, format='JPEG')
|
|
MINIO.put("{}-{}".format(row["uid"], row["kb_id"]), d["_id"],
|
|
output_buffer.getvalue())
|
|
d["img_id"] = "{}-{}".format(row["uid"], row["kb_id"])
|
|
docs.append(d)
|
|
|
|
for arr, img in obj.table_chunks:
|
|
for i, txt in enumerate(arr):
|
|
d = copy.deepcopy(doc)
|
|
d["content_ltks"] = huqie.qie(txt)
|
|
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
|
|
d["_id"] = md5.hexdigest()
|
|
if not img:
|
|
docs.append(d)
|
|
continue
|
|
img.save(output_buffer, format='JPEG')
|
|
MINIO.put("{}-{}".format(row["uid"], row["kb_id"]), d["_id"],
|
|
output_buffer.getvalue())
|
|
d["img_id"] = "{}-{}".format(row["uid"], row["kb_id"])
|
|
docs.append(d)
|
|
set_progress(row["kb2doc_id"], random.randint(60, 70)/100., "Continue embedding the content.")
|
|
|
|
return docs
|
|
|
|
|
|
def index_name(uid):return f"docgpt_{uid}"
|
|
|
|
def init_kb(row):
|
|
idxnm = index_name(row["uid"])
|
|
if ES.indexExist(idxnm): return
|
|
return ES.createIdx(idxnm, json.load(open("conf/mapping.json", "r")))
|
|
|
|
|
|
model = None
|
|
def embedding(docs):
|
|
global model
|
|
tts = model.encode([rmSpace(d["title_tks"]) for d in docs])
|
|
cnts = model.encode([rmSpace(d["content_ltks"]) for d in docs])
|
|
vects = 0.1 * tts + 0.9 * cnts
|
|
assert len(vects) == len(docs)
|
|
for i,d in enumerate(docs):d["q_vec"] = vects[i].tolist()
|
|
|
|
|
|
def rm_doc_from_kb(df):
|
|
if len(df) == 0:return
|
|
for _,r in df.iterrows():
|
|
ES.updateScriptByQuery(Q("term", doc_id=r["did"]),
|
|
scripts="""
|
|
if(ctx._source.kb_id.contains('%s'))
|
|
ctx._source.kb_id.remove(
|
|
ctx._source.kb_id.indexOf('%s')
|
|
);
|
|
"""%(str(r["kb_id"]),str(r["kb_id"])),
|
|
idxnm = index_name(r["uid"])
|
|
)
|
|
if len(df) == 0:return
|
|
sql = """
|
|
delete from kb2_doc where id in (%s)
|
|
"""%",".join([str(i) for i in df["kb2doc_id"]])
|
|
PG.update(sql)
|
|
|
|
|
|
def main(comm, mod):
|
|
global model
|
|
from llm import HuEmbedding
|
|
model = HuEmbedding()
|
|
tm_fnm = f"res/{comm}-{mod}.tm"
|
|
tm = findMaxDt(tm_fnm)
|
|
rows = collect(comm, mod, tm)
|
|
if len(rows) == 0:return
|
|
|
|
rm_doc_from_kb(rows.loc[rows.is_deleted == True])
|
|
rows = rows.loc[rows.is_deleted == False].reset_index(drop=True)
|
|
if len(rows) == 0:return
|
|
tmf = open(tm_fnm, "a+")
|
|
for _, r in rows.iterrows():
|
|
cks = build(r)
|
|
if not cks:
|
|
tmf.write(str(r["updated_at"]) + "\n")
|
|
continue
|
|
## TODO: exception handler
|
|
## set_progress(r["did"], -1, "ERROR: ")
|
|
embedding(cks)
|
|
|
|
set_progress(r["kb2doc_id"], random.randint(70, 95)/100.,
|
|
"Finished embedding! Start to build index!")
|
|
init_kb(r)
|
|
es_r = ES.bulk(cks, index_name(r["uid"]))
|
|
if es_r:
|
|
set_progress(r["kb2doc_id"], -1, "Index failure!")
|
|
print(es_r)
|
|
else: set_progress(r["kb2doc_id"], 1., "Done!")
|
|
tmf.write(str(r["updated_at"]) + "\n")
|
|
tmf.close()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from mpi4py import MPI
|
|
comm = MPI.COMM_WORLD
|
|
main(comm.Get_size(), comm.Get_rank())
|
|
|