mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-23 06:30:00 +08:00

### What problem does this PR solve? ### Type of change - [x] New Feature (non-breaking change which adds functionality) - [x] Documentation Update
165 lines
7.4 KiB
Python
165 lines
7.4 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import re
|
|
from functools import partial
|
|
import pandas as pd
|
|
from api.db import LLMType
|
|
from api.db.services.dialog_service import message_fit_in
|
|
from api.db.services.llm_service import LLMBundle
|
|
from api.settings import retrievaler
|
|
from agent.component.base import ComponentBase, ComponentParamBase
|
|
|
|
|
|
class GenerateParam(ComponentParamBase):
|
|
"""
|
|
Define the Generate component parameters.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.llm_id = ""
|
|
self.prompt = ""
|
|
self.max_tokens = 0
|
|
self.temperature = 0
|
|
self.top_p = 0
|
|
self.presence_penalty = 0
|
|
self.frequency_penalty = 0
|
|
self.cite = True
|
|
self.parameters = []
|
|
|
|
def check(self):
|
|
self.check_decimal_float(self.temperature, "[Generate] Temperature")
|
|
self.check_decimal_float(self.presence_penalty, "[Generate] Presence penalty")
|
|
self.check_decimal_float(self.frequency_penalty, "[Generate] Frequency penalty")
|
|
self.check_nonnegative_number(self.max_tokens, "[Generate] Max tokens")
|
|
self.check_decimal_float(self.top_p, "[Generate] Top P")
|
|
self.check_empty(self.llm_id, "[Generate] LLM")
|
|
# self.check_defined_type(self.parameters, "Parameters", ["list"])
|
|
|
|
def gen_conf(self):
|
|
conf = {}
|
|
if self.max_tokens > 0: conf["max_tokens"] = self.max_tokens
|
|
if self.temperature > 0: conf["temperature"] = self.temperature
|
|
if self.top_p > 0: conf["top_p"] = self.top_p
|
|
if self.presence_penalty > 0: conf["presence_penalty"] = self.presence_penalty
|
|
if self.frequency_penalty > 0: conf["frequency_penalty"] = self.frequency_penalty
|
|
return conf
|
|
|
|
|
|
class Generate(ComponentBase):
|
|
component_name = "Generate"
|
|
|
|
def get_dependent_components(self):
|
|
cpnts = [para["component_id"] for para in self._param.parameters]
|
|
return cpnts
|
|
|
|
def set_cite(self, retrieval_res, answer):
|
|
retrieval_res = retrieval_res.dropna(subset=["vector", "content_ltks"]).reset_index(drop=True)
|
|
if "empty_response" in retrieval_res.columns:
|
|
retrieval_res["empty_response"].fillna("", inplace=True)
|
|
answer, idx = retrievaler.insert_citations(answer, [ck["content_ltks"] for _, ck in retrieval_res.iterrows()],
|
|
[ck["vector"] for _, ck in retrieval_res.iterrows()],
|
|
LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING,
|
|
self._canvas.get_embedding_model()), tkweight=0.7,
|
|
vtweight=0.3)
|
|
doc_ids = set([])
|
|
recall_docs = []
|
|
for i in idx:
|
|
did = retrieval_res.loc[int(i), "doc_id"]
|
|
if did in doc_ids: continue
|
|
doc_ids.add(did)
|
|
recall_docs.append({"doc_id": did, "doc_name": retrieval_res.loc[int(i), "docnm_kwd"]})
|
|
|
|
del retrieval_res["vector"]
|
|
del retrieval_res["content_ltks"]
|
|
|
|
reference = {
|
|
"chunks": [ck.to_dict() for _, ck in retrieval_res.iterrows()],
|
|
"doc_aggs": recall_docs
|
|
}
|
|
|
|
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
|
|
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
|
|
res = {"content": answer, "reference": reference}
|
|
|
|
return res
|
|
|
|
def _run(self, history, **kwargs):
|
|
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
|
|
prompt = self._param.prompt
|
|
|
|
retrieval_res = self.get_input()
|
|
input = (" - "+"\n - ".join([c for c in retrieval_res["content"] if isinstance(c, str)])) if "content" in retrieval_res else ""
|
|
for para in self._param.parameters:
|
|
cpn = self._canvas.get_component(para["component_id"])["obj"]
|
|
if cpn.component_name.lower() == "answer":
|
|
kwargs[para["key"]] = self._canvas.get_history(1)[0]["content"]
|
|
continue
|
|
_, out = cpn.output(allow_partial=False)
|
|
if "content" not in out.columns:
|
|
kwargs[para["key"]] = "Nothing"
|
|
else:
|
|
kwargs[para["key"]] = " - "+"\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
|
|
|
|
kwargs["input"] = input
|
|
for n, v in kwargs.items():
|
|
prompt = re.sub(r"\{%s\}" % re.escape(n), re.escape(str(v)), prompt)
|
|
|
|
downstreams = self._canvas.get_component(self._id)["downstream"]
|
|
if kwargs.get("stream") and len(downstreams) == 1 and self._canvas.get_component(downstreams[0])[
|
|
"obj"].component_name.lower() == "answer":
|
|
return partial(self.stream_output, chat_mdl, prompt, retrieval_res)
|
|
|
|
if "empty_response" in retrieval_res.columns and not "".join(retrieval_res["content"]):
|
|
res = {"content": "\n- ".join(retrieval_res["empty_response"]) if "\n- ".join(
|
|
retrieval_res["empty_response"]) else "Nothing found in knowledgebase!", "reference": []}
|
|
return pd.DataFrame([res])
|
|
|
|
msg = self._canvas.get_history(self._param.message_history_window_size)
|
|
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
|
|
if len(msg) < 2: msg.append({"role": "user", "content": ""})
|
|
ans = chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf())
|
|
|
|
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
|
|
res = self.set_cite(retrieval_res, ans)
|
|
return pd.DataFrame([res])
|
|
|
|
return Generate.be_output(ans)
|
|
|
|
def stream_output(self, chat_mdl, prompt, retrieval_res):
|
|
res = None
|
|
if "empty_response" in retrieval_res.columns and not "".join(retrieval_res["content"]):
|
|
res = {"content": "\n- ".join(retrieval_res["empty_response"]) if "\n- ".join(
|
|
retrieval_res["empty_response"]) else "Nothing found in knowledgebase!", "reference": []}
|
|
yield res
|
|
self.set_output(res)
|
|
return
|
|
|
|
msg = self._canvas.get_history(self._param.message_history_window_size)
|
|
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
|
|
if len(msg) < 2: msg.append({"role": "user", "content": ""})
|
|
answer = ""
|
|
for ans in chat_mdl.chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf()):
|
|
res = {"content": ans, "reference": []}
|
|
answer = ans
|
|
yield res
|
|
|
|
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
|
|
res = self.set_cite(retrieval_res, answer)
|
|
yield res
|
|
|
|
self.set_output(res)
|