ragflow/rag/nlp/search.py
2024-01-22 19:51:38 +08:00

284 lines
10 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
import json
import re
from elasticsearch_dsl import Q, Search, A
from typing import List, Optional, Dict, Union
from dataclasses import dataclass
from rag.settings import es_logger
from rag.utils import rmSpace
from rag.nlp import huqie, query
import numpy as np
def index_name(uid): return f"ragflow_{uid}"
class Dealer:
def __init__(self, es):
self.qryr = query.EsQueryer(es)
self.qryr.flds = [
"title_tks^10",
"title_sm_tks^5",
"important_kwd^30",
"important_tks^20",
"content_ltks^2",
"content_sm_ltks"]
self.es = es
@dataclass
class SearchResult:
total: int
ids: List[str]
query_vector: List[float] = None
field: Optional[Dict] = None
highlight: Optional[Dict] = None
aggregation: Union[List, Dict, None] = None
keywords: Optional[List[str]] = None
group_docs: List[List] = None
def _vector(self, txt, emb_mdl, sim=0.8, topk=10):
qv, c = emb_mdl.encode_queries(txt)
return {
"field": "q_%d_vec" % len(qv),
"k": topk,
"similarity": sim,
"num_candidates": topk * 2,
"query_vector": qv
}
def search(self, req, idxnm, emb_mdl=None):
qst = req.get("question", "")
bqry, keywords = self.qryr.question(qst)
if req.get("kb_ids"):
bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
if req.get("doc_ids"):
bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
if "available_int" in req:
if req["available_int"] == 0:
bqry.filter.append(Q("range", available_int={"lt": 1}))
else:
bqry.filter.append(Q("bool", must_not=Q("range", available_int={"lt": 1})))
bqry.boost = 0.05
s = Search()
pg = int(req.get("page", 1)) - 1
ps = int(req.get("size", 1000))
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id",
"image_id", "doc_id", "q_512_vec", "q_768_vec",
"q_1024_vec", "q_1536_vec", "available_int"])
s = s.query(bqry)[pg * ps:(pg + 1) * ps]
s = s.highlight("content_ltks")
s = s.highlight("title_ltks")
if not qst:
s = s.sort(
{"create_time": {"order": "desc", "unmapped_type": "date"}})
if qst:
s = s.highlight_options(
fragment_size=120,
number_of_fragments=5,
boundary_scanner_locale="zh-CN",
boundary_scanner="SENTENCE",
boundary_chars=",./;:\\!(),。?:!……()——、"
)
s = s.to_dict()
q_vec = []
if req.get("vector"):
assert emb_mdl, "No embedding model selected"
s["knn"] = self._vector(qst, emb_mdl, req.get("similarity", 0.4), ps)
s["knn"]["filter"] = bqry.to_dict()
if "highlight" in s: del s["highlight"]
q_vec = s["knn"]["query_vector"]
es_logger.info("【Q】: {}".format(json.dumps(s)))
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
if self.es.getTotal(res) == 0 and "knn" in s:
bqry, _ = self.qryr.question(qst, min_match="10%")
if req.get("kb_ids"):
bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
s["query"] = bqry.to_dict()
s["knn"]["filter"] = bqry.to_dict()
s["knn"]["similarity"] = 0.7
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
kwds = set([])
for k in keywords:
kwds.add(k)
for kk in huqie.qieqie(k).split(" "):
if len(kk) < 2:
continue
if kk in kwds:
continue
kwds.add(kk)
aggs = self.getAggregation(res, "docnm_kwd")
return self.SearchResult(
total=self.es.getTotal(res),
ids=self.es.getDocIds(res),
query_vector=q_vec,
aggregation=aggs,
highlight=self.getHighlight(res),
field=self.getFields(res, src),
keywords=list(kwds)
)
def getAggregation(self, res, g):
if not "aggregations" in res or "aggs_" + g not in res["aggregations"]:
return
bkts = res["aggregations"]["aggs_" + g]["buckets"]
return [(b["key"], b["doc_count"]) for b in bkts]
def getHighlight(self, res):
def rmspace(line):
eng = set(list("qwertyuioplkjhgfdsazxcvbnm"))
r = []
for t in line.split(" "):
if not t:
continue
if len(r) > 0 and len(
t) > 0 and r[-1][-1] in eng and t[0] in eng:
r.append(" ")
r.append(t)
r = "".join(r)
return r
ans = {}
for d in res["hits"]["hits"]:
hlts = d.get("highlight")
if not hlts:
continue
ans[d["_id"]] = "".join([a for a in list(hlts.items())[0][1]])
return ans
def getFields(self, sres, flds):
res = {}
if not flds:
return {}
for d in self.es.getSource(sres):
m = {n: d.get(n) for n in flds if d.get(n) is not None}
for n, v in m.items():
if isinstance(v, type([])):
m[n] = "\t".join([str(vv) for vv in v])
continue
if not isinstance(v, type("")):
m[n] = str(m[n])
m[n] = rmSpace(m[n])
if m:
res[d["id"]] = m
return res
@staticmethod
def trans2floats(txt):
return [float(t) for t in txt.split("\t")]
def insert_citations(self, answer, chunks, chunk_v, embd_mdl, tkweight=0.3, vtweight=0.7):
pieces = re.split(r"([;。?!\n]|[a-z][.?;!][ \n])", answer)
for i in range(1, len(pieces)):
if re.match(r"[a-z][.?;!][ \n]", pieces[i]):
pieces[i - 1] += pieces[i][0]
pieces[i] = pieces[i][1:]
idx = []
pieces_ = []
for i, t in enumerate(pieces):
if len(t) < 5: continue
idx.append(i)
pieces_.append(t)
es_logger.info("{} => {}".format(answer, pieces_))
if not pieces_: return answer
ans_v, c = embd_mdl.encode(pieces_)
assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
len(ans_v[0]), len(chunk_v[0]))
chunks_tks = [huqie.qie(ck).split(" ") for ck in chunks]
cites = {}
for i,a in enumerate(pieces_):
sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
chunk_v,
huqie.qie(pieces_[i]).split(" "),
chunks_tks,
tkweight, vtweight)
mx = np.max(sim) * 0.99
if mx < 0.55: continue
cites[idx[i]] = list(set([str(i) for i in range(len(chunk_v)) if sim[i] > mx]))[:4]
res = ""
for i,p in enumerate(pieces):
res += p
if i not in idx:continue
if i not in cites:continue
res += "##%s$$"%"$".join(cites[i])
return res
def rerank(self, sres, query, tkweight=0.3, vtweight=0.7, cfield="content_ltks"):
ins_embd = [
Dealer.trans2floats(
sres.field[i]["q_%d_vec" % len(sres.query_vector)]) for i in sres.ids]
if not ins_embd:
return [], [], []
ins_tw = [huqie.qie(sres.field[i][cfield]).split(" ") for i in sres.ids]
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
ins_embd,
huqie.qie(query).split(" "),
ins_tw, tkweight, vtweight)
return sim, tksim, vtsim
def hybrid_similarity(self, ans_embd, ins_embd, ans, inst):
return self.qryr.hybrid_similarity(ans_embd,
ins_embd,
huqie.qie(ans).split(" "),
huqie.qie(inst).split(" "))
def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True):
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
if not question: return ranks
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": top,
"question": question, "vector": True,
"similarity": similarity_threshold}
sres = self.search(req, index_name(tenant_id), embd_mdl)
sim, tsim, vsim = self.rerank(
sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
idx = np.argsort(sim * -1)
dim = len(sres.query_vector)
start_idx = (page - 1) * page_size
for i in idx:
ranks["total"] += 1
if sim[i] < similarity_threshold:
break
start_idx -= 1
if start_idx >= 0:
continue
if len(ranks["chunks"]) == page_size:
if aggs:
continue
break
id = sres.ids[i]
dnm = sres.field[id]["docnm_kwd"]
d = {
"chunk_id": id,
"content_ltks": sres.field[id]["content_ltks"],
"doc_id": sres.field[id]["doc_id"],
"docnm_kwd": dnm,
"kb_id": sres.field[id]["kb_id"],
"important_kwd": sres.field[id].get("important_kwd", []),
"img_id": sres.field[id].get("img_id", ""),
"similarity": sim[i],
"vector_similarity": vsim[i],
"term_similarity": tsim[i],
"vector": self.trans2floats(sres.field[id].get("q_%d_vec" % dim, "\t".join(["0"] * dim)))
}
ranks["chunks"].append(d)
if dnm not in ranks["doc_aggs"]:
ranks["doc_aggs"][dnm] = 0
ranks["doc_aggs"][dnm] += 1
return ranks