mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-21 13:40:00 +08:00
285 lines
9.5 KiB
Python
285 lines
9.5 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import datetime
|
|
import json
|
|
import logging
|
|
import os
|
|
import hashlib
|
|
import copy
|
|
import time
|
|
import random
|
|
import re
|
|
from timeit import default_timer as timer
|
|
|
|
from rag.llm import EmbeddingModel, CvModel
|
|
from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
|
|
from rag.utils import ELASTICSEARCH
|
|
from rag.utils import MINIO
|
|
from rag.utils import rmSpace, findMaxTm
|
|
|
|
from rag.nlp import huchunk, huqie, search
|
|
from io import BytesIO
|
|
import pandas as pd
|
|
from elasticsearch_dsl import Q
|
|
from PIL import Image
|
|
from rag.parser import (
|
|
PdfParser,
|
|
DocxParser,
|
|
ExcelParser
|
|
)
|
|
from rag.nlp.huchunk import (
|
|
PdfChunker,
|
|
DocxChunker,
|
|
ExcelChunker,
|
|
PptChunker,
|
|
TextChunker
|
|
)
|
|
from api.db import LLMType
|
|
from api.db.services.document_service import DocumentService
|
|
from api.db.services.llm_service import TenantLLMService
|
|
from api.settings import database_logger
|
|
from api.utils import get_format_time
|
|
from api.utils.file_utils import get_project_base_directory
|
|
|
|
BATCH_SIZE = 64
|
|
|
|
PDF = PdfChunker(PdfParser())
|
|
DOC = DocxChunker(DocxParser())
|
|
EXC = ExcelChunker(ExcelParser())
|
|
PPT = PptChunker()
|
|
|
|
|
|
def chuck_doc(name, binary, cvmdl=None):
|
|
suff = os.path.split(name)[-1].lower().split(".")[-1]
|
|
if suff.find("pdf") >= 0:
|
|
return PDF(binary)
|
|
if suff.find("doc") >= 0:
|
|
return DOC(binary)
|
|
if re.match(r"(xlsx|xlsm|xltx|xltm)", suff):
|
|
return EXC(binary)
|
|
if suff.find("ppt") >= 0:
|
|
return PPT(binary)
|
|
if cvmdl and re.search(r"\.(jpg|jpeg|png|tif|gif|pcx|tga|exif|fpx|svg|psd|cdr|pcd|dxf|ufo|eps|ai|raw|WMF|webp|avif|apng|icon|ico)$",
|
|
name.lower()):
|
|
txt = cvmdl.describe(binary)
|
|
field = TextChunker.Fields()
|
|
field.text_chunks = [(txt, binary)]
|
|
field.table_chunks = []
|
|
return field
|
|
|
|
return TextChunker()(binary)
|
|
|
|
|
|
def collect(comm, mod, tm):
|
|
docs = DocumentService.get_newly_uploaded(tm, mod, comm)
|
|
if len(docs) == 0:
|
|
return pd.DataFrame()
|
|
docs = pd.DataFrame(docs)
|
|
mtm = docs["update_time"].max()
|
|
cron_logger.info("TOTAL:{}, To:{}".format(len(docs), mtm))
|
|
return docs
|
|
|
|
|
|
def set_progress(docid, prog, msg="Processing...", begin=False):
|
|
d = {"progress": prog, "progress_msg": msg}
|
|
if begin:
|
|
d["process_begin_at"] = get_format_time()
|
|
try:
|
|
DocumentService.update_by_id(
|
|
docid, {"progress": prog, "progress_msg": msg})
|
|
except Exception as e:
|
|
cron_logger.error("set_progress:({}), {}".format(docid, str(e)))
|
|
|
|
|
|
def build(row, cvmdl):
|
|
if row["size"] > DOC_MAXIMUM_SIZE:
|
|
set_progress(row["id"], -1, "File size exceeds( <= %dMb )" %
|
|
(int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
|
|
return []
|
|
|
|
# res = ELASTICSEARCH.search(Q("term", doc_id=row["id"]))
|
|
# if ELASTICSEARCH.getTotal(res) > 0:
|
|
# ELASTICSEARCH.updateScriptByQuery(Q("term", doc_id=row["id"]),
|
|
# scripts="""
|
|
# if(!ctx._source.kb_id.contains('%s'))
|
|
# ctx._source.kb_id.add('%s');
|
|
# """ % (str(row["kb_id"]), str(row["kb_id"])),
|
|
# idxnm=search.index_name(row["tenant_id"])
|
|
# )
|
|
# set_progress(row["id"], 1, "Done")
|
|
# return []
|
|
|
|
random.seed(time.time())
|
|
set_progress(row["id"], random.randint(0, 20) /
|
|
100., "Finished preparing! Start to slice file!", True)
|
|
try:
|
|
cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"]))
|
|
obj = chuck_doc(row["name"], MINIO.get(row["kb_id"], row["location"]), cvmdl)
|
|
except Exception as e:
|
|
if re.search("(No such file|not found)", str(e)):
|
|
set_progress(
|
|
row["id"], -1, "Can not find file <%s>" %
|
|
row["doc_name"])
|
|
else:
|
|
set_progress(
|
|
row["id"], -1, f"Internal server error: %s" %
|
|
str(e).replace(
|
|
"'", ""))
|
|
|
|
cron_logger.warn("Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
|
|
|
|
return []
|
|
|
|
if not obj.text_chunks and not obj.table_chunks:
|
|
set_progress(
|
|
row["id"],
|
|
1,
|
|
"Nothing added! Mostly, file type unsupported yet.")
|
|
return []
|
|
|
|
set_progress(row["id"], random.randint(20, 60) / 100.,
|
|
"Finished slicing files. Start to embedding the content.")
|
|
|
|
doc = {
|
|
"doc_id": row["id"],
|
|
"kb_id": [str(row["kb_id"])],
|
|
"docnm_kwd": os.path.split(row["location"])[-1],
|
|
"title_tks": huqie.qie(row["name"])
|
|
}
|
|
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
|
output_buffer = BytesIO()
|
|
docs = []
|
|
for txt, img in obj.text_chunks:
|
|
d = copy.deepcopy(doc)
|
|
md5 = hashlib.md5()
|
|
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
|
|
d["_id"] = md5.hexdigest()
|
|
d["content_ltks"] = huqie.qie(txt)
|
|
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
|
|
if not img:
|
|
docs.append(d)
|
|
continue
|
|
|
|
if isinstance(img, bytes):
|
|
output_buffer = BytesIO(img)
|
|
else:
|
|
img.save(output_buffer, format='JPEG')
|
|
|
|
MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
|
|
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
|
|
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
|
docs.append(d)
|
|
|
|
for arr, img in obj.table_chunks:
|
|
for i, txt in enumerate(arr):
|
|
d = copy.deepcopy(doc)
|
|
d["content_ltks"] = huqie.qie(txt)
|
|
md5 = hashlib.md5()
|
|
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
|
|
d["_id"] = md5.hexdigest()
|
|
if not img:
|
|
docs.append(d)
|
|
continue
|
|
img.save(output_buffer, format='JPEG')
|
|
MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
|
|
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
|
|
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
|
docs.append(d)
|
|
set_progress(row["id"], random.randint(60, 70) /
|
|
100., "Continue embedding the content.")
|
|
|
|
return docs
|
|
|
|
|
|
def init_kb(row):
|
|
idxnm = search.index_name(row["tenant_id"])
|
|
if ELASTICSEARCH.indexExist(idxnm):
|
|
return
|
|
return ELASTICSEARCH.createIdx(idxnm, json.load(
|
|
open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
|
|
|
|
|
|
def embedding(docs, mdl):
|
|
tts, cnts = [rmSpace(d["title_tks"]) for d in docs], [rmSpace(d["content_ltks"]) for d in docs]
|
|
tk_count = 0
|
|
tts, c = mdl.encode(tts)
|
|
tk_count += c
|
|
cnts, c = mdl.encode(cnts)
|
|
tk_count += c
|
|
vects = 0.1 * tts + 0.9 * cnts
|
|
assert len(vects) == len(docs)
|
|
for i, d in enumerate(docs):
|
|
v = vects[i].tolist()
|
|
d["q_%d_vec"%len(v)] = v
|
|
return tk_count
|
|
|
|
|
|
def main(comm, mod):
|
|
tm_fnm = os.path.join(get_project_base_directory(), "rag/res", f"{comm}-{mod}.tm")
|
|
tm = findMaxTm(tm_fnm)
|
|
rows = collect(comm, mod, tm)
|
|
if len(rows) == 0:
|
|
return
|
|
|
|
tmf = open(tm_fnm, "a+")
|
|
for _, r in rows.iterrows():
|
|
embd_mdl = TenantLLMService.model_instance(r["tenant_id"], LLMType.EMBEDDING)
|
|
if not embd_mdl:
|
|
set_progress(r["id"], -1, "Can't find embedding model!")
|
|
cron_logger.error("Tenant({}) can't find embedding model!".format(r["tenant_id"]))
|
|
continue
|
|
cv_mdl = TenantLLMService.model_instance(r["tenant_id"], LLMType.IMAGE2TEXT)
|
|
st_tm = timer()
|
|
cks = build(r, cv_mdl)
|
|
if not cks:
|
|
tmf.write(str(r["update_time"]) + "\n")
|
|
continue
|
|
# TODO: exception handler
|
|
## set_progress(r["did"], -1, "ERROR: ")
|
|
try:
|
|
tk_count = embedding(cks, embd_mdl)
|
|
except Exception as e:
|
|
set_progress(r["id"], -1, "Embedding error:{}".format(str(e)))
|
|
cron_logger.error(str(e))
|
|
continue
|
|
|
|
set_progress(r["id"], random.randint(70, 95) / 100.,
|
|
"Finished embedding! Start to build index!")
|
|
init_kb(r)
|
|
chunk_count = len(set([c["_id"] for c in cks]))
|
|
es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
|
|
if es_r:
|
|
set_progress(r["id"], -1, "Index failure!")
|
|
cron_logger.error(str(es_r))
|
|
else:
|
|
set_progress(r["id"], 1., "Done!")
|
|
DocumentService.increment_chunk_num(r["id"], r["kb_id"], tk_count, chunk_count, timer()-st_tm)
|
|
cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks)))
|
|
|
|
tmf.write(str(r["update_time"]) + "\n")
|
|
tmf.close()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
peewee_logger = logging.getLogger('peewee')
|
|
peewee_logger.propagate = False
|
|
peewee_logger.addHandler(database_logger.handlers[0])
|
|
peewee_logger.setLevel(database_logger.level)
|
|
|
|
from mpi4py import MPI
|
|
comm = MPI.COMM_WORLD
|
|
main(comm.Get_size(), comm.Get_rank())
|