mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-06-04 11:24:00 +08:00

### What problem does this PR solve? This PR introduces Pydantic-based validation for the update dataset HTTP API, improving code clarity and robustness. Key changes include: 1. Pydantic Validation 2. Error Handling 3. Test Updates 4. Documentation Updates 5. fix bug: #5915 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue) - [x] Documentation Update - [x] Refactoring
364 lines
13 KiB
Python
364 lines
13 KiB
Python
#
|
|
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import uuid
|
|
from enum import auto
|
|
from typing import Annotated, Any
|
|
|
|
from flask import Request
|
|
from pydantic import UUID1, BaseModel, Field, StringConstraints, ValidationError, field_serializer, field_validator
|
|
from strenum import StrEnum
|
|
from werkzeug.exceptions import BadRequest, UnsupportedMediaType
|
|
|
|
from api.constants import DATASET_NAME_LIMIT
|
|
|
|
|
|
def validate_and_parse_json_request(request: Request, validator: type[BaseModel], *, extras: dict[str, Any] | None = None, exclude_unset: bool = False) -> tuple[dict[str, Any] | None, str | None]:
|
|
"""
|
|
Validates and parses JSON requests through a multi-stage validation pipeline.
|
|
|
|
Implements a four-stage validation process:
|
|
1. Content-Type verification (must be application/json)
|
|
2. JSON syntax validation
|
|
3. Payload structure type checking
|
|
4. Pydantic model validation with error formatting
|
|
|
|
Args:
|
|
request (Request): Flask request object containing HTTP payload
|
|
validator (type[BaseModel]): Pydantic model class for data validation
|
|
extras (dict[str, Any] | None): Additional fields to merge into payload
|
|
before validation. These fields will be removed from the final output
|
|
exclude_unset (bool): Whether to exclude fields that have not been explicitly set
|
|
|
|
Returns:
|
|
tuple[Dict[str, Any] | None, str | None]:
|
|
- First element:
|
|
- Validated dictionary on success
|
|
- None on validation failure
|
|
- Second element:
|
|
- None on success
|
|
- Diagnostic error message on failure
|
|
|
|
Raises:
|
|
UnsupportedMediaType: When Content-Type header is not application/json
|
|
BadRequest: For structural JSON syntax errors
|
|
ValidationError: When payload violates Pydantic schema rules
|
|
|
|
Examples:
|
|
>>> validate_and_parse_json_request(valid_request, DatasetSchema)
|
|
({"name": "Dataset1", "format": "csv"}, None)
|
|
|
|
>>> validate_and_parse_json_request(xml_request, DatasetSchema)
|
|
(None, "Unsupported content type: Expected application/json, got text/xml")
|
|
|
|
>>> validate_and_parse_json_request(bad_json_request, DatasetSchema)
|
|
(None, "Malformed JSON syntax: Missing commas/brackets or invalid encoding")
|
|
|
|
Notes:
|
|
1. Validation Priority:
|
|
- Content-Type verification precedes JSON parsing
|
|
- Structural validation occurs before schema validation
|
|
2. Extra fields added via `extras` parameter are automatically removed
|
|
from the final output after validation
|
|
"""
|
|
try:
|
|
payload = request.get_json() or {}
|
|
except UnsupportedMediaType:
|
|
return None, f"Unsupported content type: Expected application/json, got {request.content_type}"
|
|
except BadRequest:
|
|
return None, "Malformed JSON syntax: Missing commas/brackets or invalid encoding"
|
|
|
|
if not isinstance(payload, dict):
|
|
return None, f"Invalid request payload: expected object, got {type(payload).__name__}"
|
|
|
|
try:
|
|
if extras is not None:
|
|
payload.update(extras)
|
|
validated_request = validator(**payload)
|
|
except ValidationError as e:
|
|
return None, format_validation_error_message(e)
|
|
|
|
parsed_payload = validated_request.model_dump(by_alias=True, exclude_unset=exclude_unset)
|
|
|
|
if extras is not None:
|
|
for key in list(parsed_payload.keys()):
|
|
if key in extras:
|
|
del parsed_payload[key]
|
|
|
|
return parsed_payload, None
|
|
|
|
|
|
def format_validation_error_message(e: ValidationError) -> str:
|
|
"""
|
|
Formats validation errors into a standardized string format.
|
|
|
|
Processes pydantic ValidationError objects to create human-readable error messages
|
|
containing field locations, error descriptions, and input values.
|
|
|
|
Args:
|
|
e (ValidationError): The validation error instance containing error details
|
|
|
|
Returns:
|
|
str: Formatted error messages joined by newlines. Each line contains:
|
|
- Field path (dot-separated)
|
|
- Error message
|
|
- Truncated input value (max 128 chars)
|
|
|
|
Example:
|
|
>>> try:
|
|
... UserModel(name=123, email="invalid")
|
|
... except ValidationError as e:
|
|
... print(format_validation_error_message(e))
|
|
Field: <name> - Message: <Input should be a valid string> - Value: <123>
|
|
Field: <email> - Message: <value is not a valid email address> - Value: <invalid>
|
|
"""
|
|
error_messages = []
|
|
|
|
for error in e.errors():
|
|
field = ".".join(map(str, error["loc"]))
|
|
msg = error["msg"]
|
|
input_val = error["input"]
|
|
input_str = str(input_val)
|
|
|
|
if len(input_str) > 128:
|
|
input_str = input_str[:125] + "..."
|
|
|
|
error_msg = f"Field: <{field}> - Message: <{msg}> - Value: <{input_str}>"
|
|
error_messages.append(error_msg)
|
|
|
|
return "\n".join(error_messages)
|
|
|
|
|
|
class PermissionEnum(StrEnum):
|
|
me = auto()
|
|
team = auto()
|
|
|
|
|
|
class ChunkMethodnEnum(StrEnum):
|
|
naive = auto()
|
|
book = auto()
|
|
email = auto()
|
|
laws = auto()
|
|
manual = auto()
|
|
one = auto()
|
|
paper = auto()
|
|
picture = auto()
|
|
presentation = auto()
|
|
qa = auto()
|
|
table = auto()
|
|
tag = auto()
|
|
|
|
|
|
class GraphragMethodEnum(StrEnum):
|
|
light = auto()
|
|
general = auto()
|
|
|
|
|
|
class Base(BaseModel):
|
|
class Config:
|
|
extra = "forbid"
|
|
|
|
|
|
class RaptorConfig(Base):
|
|
use_raptor: bool = Field(default=False)
|
|
prompt: Annotated[
|
|
str,
|
|
StringConstraints(strip_whitespace=True, min_length=1),
|
|
Field(
|
|
default="Please summarize the following paragraphs. Be careful with the numbers, do not make things up. Paragraphs as following:\n {cluster_content}\nThe above is the content you need to summarize."
|
|
),
|
|
]
|
|
max_token: int = Field(default=256, ge=1, le=2048)
|
|
threshold: float = Field(default=0.1, ge=0.0, le=1.0)
|
|
max_cluster: int = Field(default=64, ge=1, le=1024)
|
|
random_seed: int = Field(default=0, ge=0)
|
|
|
|
|
|
class GraphragConfig(Base):
|
|
use_graphrag: bool = Field(default=False)
|
|
entity_types: list[str] = Field(default_factory=lambda: ["organization", "person", "geo", "event", "category"])
|
|
method: GraphragMethodEnum = Field(default=GraphragMethodEnum.light)
|
|
community: bool = Field(default=False)
|
|
resolution: bool = Field(default=False)
|
|
|
|
|
|
class ParserConfig(Base):
|
|
auto_keywords: int = Field(default=0, ge=0, le=32)
|
|
auto_questions: int = Field(default=0, ge=0, le=10)
|
|
chunk_token_num: int = Field(default=128, ge=1, le=2048)
|
|
delimiter: str = Field(default=r"\n", min_length=1)
|
|
graphrag: GraphragConfig | None = None
|
|
html4excel: bool = False
|
|
layout_recognize: str = "DeepDOC"
|
|
raptor: RaptorConfig | None = None
|
|
tag_kb_ids: list[str] = Field(default_factory=list)
|
|
topn_tags: int = Field(default=1, ge=1, le=10)
|
|
filename_embd_weight: float | None = Field(default=None, ge=0.0, le=1.0)
|
|
task_page_size: int | None = Field(default=None, ge=1)
|
|
pages: list[list[int]] | None = None
|
|
|
|
|
|
class CreateDatasetReq(Base):
|
|
name: Annotated[str, StringConstraints(strip_whitespace=True, min_length=1, max_length=DATASET_NAME_LIMIT), Field(...)]
|
|
avatar: str | None = Field(default=None, max_length=65535)
|
|
description: str | None = Field(default=None, max_length=65535)
|
|
embedding_model: Annotated[str, StringConstraints(strip_whitespace=True, max_length=255), Field(default="", serialization_alias="embd_id")]
|
|
permission: Annotated[PermissionEnum, StringConstraints(strip_whitespace=True, min_length=1, max_length=16), Field(default=PermissionEnum.me)]
|
|
chunk_method: Annotated[ChunkMethodnEnum, StringConstraints(strip_whitespace=True, min_length=1, max_length=32), Field(default=ChunkMethodnEnum.naive, serialization_alias="parser_id")]
|
|
pagerank: int = Field(default=0, ge=0, le=100)
|
|
parser_config: ParserConfig = Field(default_factory=dict)
|
|
|
|
@field_validator("avatar")
|
|
@classmethod
|
|
def validate_avatar_base64(cls, v: str | None) -> str | None:
|
|
"""
|
|
Validates Base64-encoded avatar string format and MIME type compliance.
|
|
|
|
Implements a three-stage validation workflow:
|
|
1. MIME prefix existence check
|
|
2. MIME type format validation
|
|
3. Supported type verification
|
|
|
|
Args:
|
|
v (str): Raw avatar field value
|
|
|
|
Returns:
|
|
str: Validated Base64 string
|
|
|
|
Raises:
|
|
ValueError: For structural errors in these cases:
|
|
- Missing MIME prefix header
|
|
- Invalid MIME prefix format
|
|
- Unsupported image MIME type
|
|
|
|
Example:
|
|
```python
|
|
# Valid case
|
|
CreateDatasetReq(avatar="...")
|
|
|
|
# Invalid cases
|
|
CreateDatasetReq(avatar="image/jpeg;base64,...") # Missing 'data:' prefix
|
|
CreateDatasetReq(avatar="data:video/mp4;base64,...") # Unsupported MIME type
|
|
```
|
|
"""
|
|
if v is None:
|
|
return v
|
|
|
|
if "," in v:
|
|
prefix, _ = v.split(",", 1)
|
|
if not prefix.startswith("data:"):
|
|
raise ValueError("Invalid MIME prefix format. Must start with 'data:'")
|
|
|
|
mime_type = prefix[5:].split(";")[0]
|
|
supported_mime_types = ["image/jpeg", "image/png"]
|
|
if mime_type not in supported_mime_types:
|
|
raise ValueError(f"Unsupported MIME type. Allowed: {supported_mime_types}")
|
|
|
|
return v
|
|
else:
|
|
raise ValueError("Missing MIME prefix. Expected format: data:<mime>;base64,<data>")
|
|
|
|
@field_validator("embedding_model", mode="after")
|
|
@classmethod
|
|
def validate_embedding_model(cls, v: str) -> str:
|
|
"""
|
|
Validates embedding model identifier format compliance.
|
|
|
|
Validation pipeline:
|
|
1. Structural format verification
|
|
2. Component non-empty check
|
|
3. Value normalization
|
|
|
|
Args:
|
|
v (str): Raw model identifier
|
|
|
|
Returns:
|
|
str: Validated <model_name>@<provider> format
|
|
|
|
Raises:
|
|
ValueError: For these violations:
|
|
- Missing @ separator
|
|
- Empty model_name/provider
|
|
- Invalid component structure
|
|
|
|
Examples:
|
|
Valid: "text-embedding-3-large@openai"
|
|
Invalid: "invalid_model" (no @)
|
|
Invalid: "@openai" (empty model_name)
|
|
Invalid: "text-embedding-3-large@" (empty provider)
|
|
"""
|
|
if "@" not in v:
|
|
raise ValueError("Embedding model identifier must follow <model_name>@<provider> format")
|
|
|
|
components = v.split("@", 1)
|
|
if len(components) != 2 or not all(components):
|
|
raise ValueError("Both model_name and provider must be non-empty strings")
|
|
|
|
model_name, provider = components
|
|
if not model_name.strip() or not provider.strip():
|
|
raise ValueError("Model name and provider cannot be whitespace-only strings")
|
|
return v
|
|
|
|
@field_validator("permission", mode="before")
|
|
@classmethod
|
|
def permission_auto_lowercase(cls, v: Any) -> Any:
|
|
"""
|
|
Normalize permission input to lowercase for consistent PermissionEnum matching.
|
|
|
|
Args:
|
|
v (Any): Raw input value for the permission field
|
|
|
|
Returns:
|
|
Lowercase string if input is string type, otherwise returns original value
|
|
|
|
Behavior:
|
|
- Converts string inputs to lowercase (e.g., "ME" → "me")
|
|
- Non-string values pass through unchanged
|
|
- Works in validation pre-processing stage (before enum conversion)
|
|
"""
|
|
return v.lower() if isinstance(v, str) else v
|
|
|
|
@field_validator("parser_config", mode="after")
|
|
@classmethod
|
|
def validate_parser_config_json_length(cls, v: ParserConfig) -> ParserConfig:
|
|
"""
|
|
Validates serialized JSON length constraints for parser configuration.
|
|
|
|
Implements a two-stage validation workflow:
|
|
1. Model serialization - convert Pydantic model to JSON string
|
|
2. Size verification - enforce maximum allowed payload size
|
|
|
|
Args:
|
|
v (ParserConfig | None): Raw parser configuration object
|
|
|
|
Returns:
|
|
ParserConfig | None: Validated configuration object
|
|
|
|
Raises:
|
|
ValueError: When serialized JSON exceeds 65,535 characters
|
|
"""
|
|
if (json_str := v.model_dump_json()) and len(json_str) > 65535:
|
|
raise ValueError(f"Parser config exceeds size limit (max 65,535 characters). Current size: {len(json_str):,}")
|
|
return v
|
|
|
|
|
|
class UpdateDatasetReq(CreateDatasetReq):
|
|
dataset_id: UUID1 = Field(...)
|
|
name: Annotated[str, StringConstraints(strip_whitespace=True, min_length=1, max_length=DATASET_NAME_LIMIT), Field(default="")]
|
|
|
|
@field_serializer("dataset_id")
|
|
def serialize_uuid_to_hex(self, v: uuid.UUID) -> str:
|
|
return v.hex
|